Tag Archives: modern

#435822 The Internet Is Coming to the Rest of ...

People surf it. Spiders crawl it. Gophers navigate it.

Now, a leading group of cognitive biologists and computer scientists want to make the tools of the Internet accessible to the rest of the animal kingdom.

Dubbed the Interspecies Internet, the project aims to provide intelligent animals such as elephants, dolphins, magpies, and great apes with a means to communicate among each other and with people online.

And through artificial intelligence, virtual reality, and other digital technologies, researchers hope to crack the code of all the chirps, yips, growls, and whistles that underpin animal communication.

Oh, and musician Peter Gabriel is involved.

“We can use data analysis and technology tools to give non-humans a lot more choice and control,” the former Genesis frontman, dressed in his signature Nehru-style collar shirt and loose, open waistcoat, told IEEE Spectrum at the inaugural Interspecies Internet Workshop, held Monday in Cambridge, Mass. “This will be integral to changing our relationship with the natural world.”

The workshop was a long time in the making.

Eighteen years ago, Gabriel visited a primate research center in Atlanta, Georgia, where he jammed with two bonobos, a male named Kanzi and his half-sister Panbanisha. It was the first time either bonobo had sat at a piano before, and both displayed an exquisite sense of musical timing and melody.

Gabriel seemed to be speaking to the great apes through his synthesizer. It was a shock to the man who once sang “Shock the Monkey.”

“It blew me away,” he says.

Add in the bonobos’ ability to communicate by pointing to abstract symbols, Gabriel notes, and “you’d have to be deaf, dumb, and very blind not to notice language being used.”

Gabriel eventually teamed up with Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and IoT pioneer Neil Gershenfeld to propose building an Interspecies Internet. Presented in a 2013 TED Talk as an “idea in progress,” the concept proved to be ahead of the technology.

“It wasn’t ready,” says Gershenfeld, director of MIT’s Center for Bits and Atoms. “It needed to incubate.”

So, for the past six years, the architects of the Dolittlesque initiative embarked on two small pilot projects, one for dolphins and one for chimpanzees.

At her Hunter College lab in New York City, Reiss developed what she calls the D-Pad—a touchpad for dolphins.

Reiss had been trying for years to create an underwater touchscreen with which to probe the cognition and communication skills of bottlenose dolphins. But “it was a nightmare coming up with something that was dolphin-safe and would work,” she says.

Her first attempt emitted too much heat. A Wii-like system of gesture recognition proved too difficult to install in the dolphin tanks.

Eventually, she joined forces with Rockefeller University biophysicist Marcelo Magnasco and invented an optical detection system in which images and infrared sensors are projected through an underwater viewing window onto a glass panel, allowing the dolphins to play specially designed apps, including one dubbed Whack-a-Fish.

Meanwhile, in the United Kingdom, Gabriel worked with Alison Cronin, director of the ape rescue center Monkey World, to test the feasibility of using FaceTime with chimpanzees.

The chimps engaged with the technology, Cronin reported at this week’s workshop. However, our hominid cousins proved as adept at videotelephonic discourse as my three-year-old son is at video chatting with his grandparents—which is to say, there was a lot of pass-the-banana-through-the-screen and other silly games, and not much meaningful conversation.

“We can use data analysis and technology tools to give non-humans a lot more choice and control.”
—Peter Gabriel

The buggy, rudimentary attempt at interspecies online communication—what Cronin calls her “Max Headroom experiment”—shows that building the Interspecies Internet will not be as simple as giving out Skype-enabled tablets to smart animals.

“There are all sorts of problems with creating a human-centered experience for another animal,” says Gabriel Miller, director of research and development at the San Diego Zoo.

Miller has been working on animal-focused sensory tools such as an “Elephone” (for elephants) and a “Joybranch” (for birds), but it’s not easy to design efficient interactive systems for other creatures—and for the Interspecies Internet to be successful, Miller points out, “that will be super-foundational.”

Researchers are making progress on natural language processing of animal tongues. Through a non-profit organization called the Earth Species Project, former Firefox designer Aza Raskin and early Twitter engineer Britt Selvitelle are applying deep learning algorithms developed for unsupervised machine translation of human languages to fashion a Rosetta Stone–like tool capable of interpreting the vocalizations of whales, primates, and other animals.

Inspired by the scientists who first documented the complex sonic arrangements of humpback whales in the 1960s—a discovery that ushered in the modern marine conservation movement—Selvitelle hopes that an AI-powered animal translator can have a similar effect on environmentalism today.

“A lot of shifts happen when someone who doesn’t have a voice gains a voice,” he says.

A challenge with this sort of AI software remains verification and validation. Normally, machine-learning algorithms are benchmarked against a human expert, but who is to say if a cybernetic translation of a sperm whale’s clicks is accurate or not?

One could back-translate an English expression into sperm whale-ese and then into English again. But with the great apes, there might be a better option.

According to primatologist Sue Savage-Rumbaugh, expertly trained bonobos could serve as bilingual interpreters, translating the argot of apes into the parlance of people, and vice versa.

Not just any trained ape will do, though. They have to grow up in a mixed Pan/Homo environment, as Kanzi and Panbanisha were.

“If I can have a chat with a cow, maybe I can have more compassion for it.”
—Jeremy Coller

Those bonobos were raised effectively from birth both by Savage-Rumbaugh, who taught the animals to understand spoken English and to communicate via hundreds of different pictographic “lexigrams,” and a bonobo mother named Matata that had lived for six years in the Congolese rainforests before her capture.

Unlike all other research primates—which are brought into captivity as infants, reared by human caretakers, and have limited exposure to their natural cultures or languages—those apes thus grew up fluent in both bonobo and human.

Panbanisha died in 2012, but Kanzi, aged 38, is still going strong, living at an ape sanctuary in Des Moines, Iowa. Researchers continue to study his cognitive abilities—Francine Dolins, a primatologist at the University of Michigan-Dearborn, is running one study in which Kanzi and other apes hunt rabbits and forage for fruit through avatars on a touchscreen. Kanzi could, in theory, be recruited to check the accuracy of any Google Translate–like app for bonobo hoots, barks, grunts, and cries.

Alternatively, Kanzi could simply provide Internet-based interpreting services for our two species. He’s already proficient at video chatting with humans, notes Emily Walco, a PhD student at Harvard University who has personally Skyped with Kanzi. “He was super into it,” Walco says.

And if wild bonobos in Central Africa can be coaxed to gather around a computer screen, Savage-Rumbaugh is confident Kanzi could communicate with them that way. “It can all be put together,” she says. “We can have an Interspecies Internet.”

“Both the technology and the knowledge had to advance,” Savage-Rumbaugh notes. However, now, “the techniques that we learned could really be extended to a cow or a pig.”

That’s music to the ears of Jeremy Coller, a private equity specialist whose foundation partially funded the Interspecies Internet Workshop. Coller is passionate about animal welfare and has devoted much of his philanthropic efforts toward the goal of ending factory farming.

At the workshop, his foundation announced the creation of the Coller Doolittle Prize, a US $100,000 award to help fund further research related to the Interspecies Internet. (A working group also formed to synthesize plans for the emerging field, to facilitate future event planning, and to guide testing of shared technology platforms.)

Why would a multi-millionaire with no background in digital communication systems or cognitive psychology research want to back the initiative? For Coller, the motivation boils to interspecies empathy.

“If I can have a chat with a cow,” he says, “maybe I can have more compassion for it.”

An abridged version of this post appears in the September 2019 print issue as “Elephants, Dolphins, and Chimps Need the Internet, Too.” Continue reading

Posted in Human Robots

#435436 Undeclared Wars in Cyberspace Are ...

The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.

Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.

This is cyberwarfare.

The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).

At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.

For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.

“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”

The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.

The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.

US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.

However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.

“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”

The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.

Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².

UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.

“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.

However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”

Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.

Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”

White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”

The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.

“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.

But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.

“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”

In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.

Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.

Image Credit: pinkeyes / Shutterstock.com Continue reading

Posted in Human Robots

#435186 What’s Behind the International Rush ...

There’s no better way of ensuring you win a race than by setting the rules yourself. That may be behind the recent rush by countries, international organizations, and companies to put forward their visions for how the AI race should be governed.

China became the latest to release a set of “ethical standards” for the development of AI last month, which might raise eyebrows given the country’s well-documented AI-powered state surveillance program and suspect approaches to privacy and human rights.

But given the recent flurry of AI guidelines, it may well have been motivated by a desire not to be left out of the conversation. The previous week the OECD, backed by the US, released its own “guiding principles” for the industry, and in April the EU released “ethical guidelines.”

The language of most of these documents is fairly abstract and noticeably similar, with broad appeals to ideals like accountability, responsibility, and transparency. The OECD’s guidelines are the lightest on detail, while the EU’s offer some more concrete suggestions such as ensuring humans always know if they’re interacting with AI and making algorithms auditable. China’s standards have an interesting focus on promoting openness and collaboration as well as expressly acknowledging AIs potential to disrupt employment.

Overall, though, one might be surprised that there aren’t more disagreements between three blocs with very divergent attitudes to technology, regulation, and economics. Most likely these are just the opening salvos in what will prove to be a long-running debate, and the devil will ultimately be in the details.

The EU seems to have stolen a march on the other two blocs, being first to publish its guidelines and having already implemented the world’s most comprehensive regulation of data—the bedrock of modern AI—with last year’s GDPR. But its lack of industry heavyweights is going to make it hard to hold onto that lead.

One organization that seems to be trying to take on the role of impartial adjudicator is the World Economic Forum, which recently hosted an event designed to find common ground between various stakeholders from across the world. What will come of the effort remains to be seen, but China’s release of guidelines broadly similar to those of its Western counterparts is a promising sign.

Perhaps most telling, though, is the ubiquitous presence of industry leaders in both advisory and leadership positions. China’s guidelines are backed by “an AI industrial league” including Baidu, Alibaba, and Tencent, and the co-chairs of the WEF’s AI Council are Microsoft President Brad Smith and prominent Chinese AI investor Kai-Fu Lee.

Shortly after the EU released its proposals one of the authors, philosopher Thomas Metzinger, said the process had been compromised by the influence of the tech industry, leading to the removal of “red lines” opposing the development of autonomous lethal weapons or social credit score systems like China’s.

For a long time big tech argued for self-regulation, but whether they’ve had an epiphany or have simply sensed the shifting winds, they are now coming out in favor of government intervention.

Both Amazon and Facebook have called for regulation of facial recognition, and in February Google went even further, calling for the government to set down rules governing AI. Facebook chief Mark Zuckerberg has also since called for even broader regulation of the tech industry.

But considering the current concern around the anti-competitive clout of the largest technology companies, it’s worth remembering that tough rules are always easier to deal with for companies with well-developed compliance infrastructure and big legal teams. And these companies are also making sure the regulation is on their terms. Wired details Microsoft’s protracted effort to shape Washington state laws governing facial recognition technology and Google’s enormous lobbying effort.

“Industry has mobilized to shape the science, morality and laws of artificial intelligence,” Harvard law professor Yochai Benkler writes in Nature. He highlights how Amazon’s funding of a National Science Foundation (NSF) program for projects on fairness in artificial intelligence undermines the ability of academia to act as an impartial counterweight to industry.

Excluding industry from the process of setting the rules to govern AI in a fair and equitable way is clearly not practical, writes Benkler, because they are the ones with the expertise. But there also needs to be more concerted public investment in research and policymaking, and efforts to limit the influence of big companies when setting the rules that will govern AI.

Image Credit: create jobs 51 / Shutterstock.com Continue reading

Posted in Human Robots

#435174 Revolt on the Horizon? How Young People ...

As digital technologies facilitate the growth of both new and incumbent organizations, we have started to see the darker sides of the digital economy unravel. In recent years, many unethical business practices have been exposed, including the capture and use of consumers’ data, anticompetitive activities, and covert social experiments.

But what do young people who grew up with the internet think about this development? Our research with 400 digital natives—19- to 24-year-olds—shows that this generation, dubbed “GenTech,” may be the one to turn the digital revolution on its head. Our findings point to a frustration and disillusionment with the way organizations have accumulated real-time information about consumers without their knowledge and often without their explicit consent.

Many from GenTech now understand that their online lives are of commercial value to an array of organizations that use this insight for the targeting and personalization of products, services, and experiences.

This era of accumulation and commercialization of user data through real-time monitoring has been coined “surveillance capitalism” and signifies a new economic system.

Artificial Intelligence
A central pillar of the modern digital economy is our interaction with artificial intelligence (AI) and machine learning algorithms. We found that 47 percent of GenTech do not want AI technology to monitor their lifestyle, purchases, and financial situation in order to recommend them particular things to buy.

In fact, only 29 percent see this as a positive intervention. Instead, they wish to maintain a sense of autonomy in their decision making and have the opportunity to freely explore new products, services, and experiences.

As individuals living in the digital age, we constantly negotiate with technology to let go of or retain control. This pendulum-like effect reflects the ongoing battle between humans and technology.

My Life, My Data?
Our research also reveals that 54 percent of GenTech are very concerned about the access organizations have to their data, while only 19 percent were not worried. Despite the EU General Data Protection Regulation being introduced in May 2018, this is still a major concern, grounded in a belief that too much of their data is in the possession of a small group of global companies, including Google, Amazon, and Facebook. Some 70 percent felt this way.

In recent weeks, both Facebook and Google have vowed to make privacy a top priority in the way they interact with users. Both companies have faced public outcry for their lack of openness and transparency when it comes to how they collect and store user data. It wasn’t long ago that a hidden microphone was found in one of Google’s home alarm products.

Google now plans to offer auto-deletion of users’ location history data, browsing, and app activity as well as extend its “incognito mode” to Google Maps and search. This will enable users to turn off tracking.

At Facebook, CEO Mark Zuckerberg is keen to reposition the platform as a “privacy focused communications platform” built on principles such as private interactions, encryption, safety, interoperability (communications across Facebook-owned apps and platforms), and secure data storage. This will be a tough turnaround for the company that is fundamentally dependent on turning user data into opportunities for highly individualized advertising.

Privacy and transparency are critically important themes for organizations today, both for those that have “grown up” online as well as the incumbents. While GenTech want organizations to be more transparent and responsible, 64 percent also believe that they cannot do much to keep their data private. Being tracked and monitored online by organizations is seen as part and parcel of being a digital consumer.

Despite these views, there is a growing revolt simmering under the surface. GenTech want to take ownership of their own data. They see this as a valuable commodity, which they should be given the opportunity to trade with organizations. Some 50 percent would willingly share their data with companies if they got something in return, for example a financial incentive.

Rewiring the Power Shift
GenTech are looking to enter into a transactional relationship with organizations. This reflects a significant change in attitudes from perceiving the free access to digital platforms as the “product” in itself (in exchange for user data), to now wishing to use that data to trade for explicit benefits.

This has created an opportunity for companies that seek to empower consumers and give them back control of their data. Several companies now offer consumers the opportunity to sell the data they are comfortable sharing or take part in research that they get paid for. More and more companies are joining this space, including People.io, Killi, and Ocean Protocol.

Sir Tim Berners Lee, the creator of the world wide web, has also been working on a way to shift the power from organizations and institutions back to citizens and consumers. The platform, Solid, offers users the opportunity to be in charge of where they store their data and who can access it. It is a form of re-decentralization.

The Solid POD (Personal Online Data storage) is a secure place on a hosted server or the individual’s own server. Users can grant apps access to their POD as a person’s data is stored centrally and not by an app developer or on an organization’s server. We see this as potentially being a way to let people take back control from technology and other companies.

GenTech have woken up to a reality where a life lived “plugged in” has significant consequences for their individual privacy and are starting to push back, questioning those organizations that have shown limited concern and continue to exercise exploitative practices.

It’s no wonder that we see these signs of revolt. GenTech is the generation with the most to lose. They face a life ahead intertwined with digital technology as part of their personal and private lives. With continued pressure on organizations to become more transparent, the time is now for young people to make their move.

Dr Mike Cooray, Professor of Practice, Hult International Business School and Dr Rikke Duus, Research Associate and Senior Teaching Fellow, UCL

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ser Borakovskyy / Shutterstock.com Continue reading

Posted in Human Robots

#434865 5 AI Breakthroughs We’ll Likely See in ...

Convergence is accelerating disruption… everywhere! Exponential technologies are colliding into each other, reinventing products, services, and industries.

As AI algorithms such as Siri and Alexa can process your voice and output helpful responses, other AIs like Face++ can recognize faces. And yet others create art from scribbles, or even diagnose medical conditions.

Let’s dive into AI and convergence.

Top 5 Predictions for AI Breakthroughs (2019-2024)
My friend Neil Jacobstein is my ‘go-to expert’ in AI, with over 25 years of technical consulting experience in the field. Currently the AI and Robotics chair at Singularity University, Jacobstein is also a Distinguished Visiting Scholar in Stanford’s MediaX Program, a Henry Crown Fellow, an Aspen Institute moderator, and serves on the National Academy of Sciences Earth and Life Studies Committee. Neil predicted five trends he expects to emerge over the next five years, by 2024.

AI gives rise to new non-human pattern recognition and intelligence results

AlphaGo Zero, a machine learning computer program trained to play the complex game of Go, defeated the Go world champion in 2016 by 100 games to zero. But instead of learning from human play, AlphaGo Zero trained by playing against itself—a method known as reinforcement learning.

Building its own knowledge from scratch, AlphaGo Zero demonstrates a novel form of creativity, free of human bias. Even more groundbreaking, this type of AI pattern recognition allows machines to accumulate thousands of years of knowledge in a matter of hours.

While these systems can’t answer the question “What is orange juice?” or compete with the intelligence of a fifth grader, they are growing more and more strategically complex, merging with other forms of narrow artificial intelligence. Within the next five years, who knows what successors of AlphaGo Zero will emerge, augmenting both your business functions and day-to-day life.

Doctors risk malpractice when not using machine learning for diagnosis and treatment planning

A group of Chinese and American researchers recently created an AI system that diagnoses common childhood illnesses, ranging from the flu to meningitis. Trained on electronic health records compiled from 1.3 million outpatient visits of almost 600,000 patients, the AI program produced diagnosis outcomes with unprecedented accuracy.

While the US health system does not tout the same level of accessible universal health data as some Chinese systems, we’ve made progress in implementing AI in medical diagnosis. Dr. Kang Zhang, chief of ophthalmic genetics at the University of California, San Diego, created his own system that detects signs of diabetic blindness, relying on both text and medical images.

With an eye to the future, Jacobstein has predicted that “we will soon see an inflection point where doctors will feel it’s a risk to not use machine learning and AI in their everyday practices because they don’t want to be called out for missing an important diagnostic signal.”

Quantum advantage will massively accelerate drug design and testing

Researchers estimate that there are 1060 possible drug-like molecules—more than the number of atoms in our solar system. But today, chemists must make drug predictions based on properties influenced by molecular structure, then synthesize numerous variants to test their hypotheses.

Quantum computing could transform this time-consuming, highly costly process into an efficient, not to mention life-changing, drug discovery protocol.

“Quantum computing is going to have a major industrial impact… not by breaking encryption,” said Jacobstein, “but by making inroads into design through massive parallel processing that can exploit superposition and quantum interference and entanglement, and that can wildly outperform classical computing.”

AI accelerates security systems’ vulnerability and defense

With the incorporation of AI into almost every aspect of our lives, cyberattacks have grown increasingly threatening. “Deep attacks” can use AI-generated content to avoid both human and AI controls.

Previous examples include fake videos of former President Obama speaking fabricated sentences, and an adversarial AI fooling another algorithm into categorizing a stop sign as a 45 mph speed limit sign. Without the appropriate protections, AI systems can be manipulated to conduct any number of destructive objectives, whether ruining reputations or diverting autonomous vehicles.

Jacobstein’s take: “We all have security systems on our buildings, in our homes, around the healthcare system, and in air traffic control, financial organizations, the military, and intelligence communities. But we all know that these systems have been hacked periodically and we’re going to see that accelerate. So, there are major business opportunities there and there are major opportunities for you to get ahead of that curve before it bites you.”

AI design systems drive breakthroughs in atomically precise manufacturing

Just as the modern computer transformed our relationship with bits and information, AI will redefine and revolutionize our relationship with molecules and materials. AI is currently being used to discover new materials for clean-tech innovations, such as solar panels, batteries, and devices that can now conduct artificial photosynthesis.

Today, it takes about 15 to 20 years to create a single new material, according to industry experts. But as AI design systems skyrocket in capacity, these will vastly accelerate the materials discovery process, allowing us to address pressing issues like climate change at record rates. Companies like Kebotix are already on their way to streamlining the creation of chemistries and materials at the click of a button.

Atomically precise manufacturing will enable us to produce the previously unimaginable.

Final Thoughts
Within just the past three years, countries across the globe have signed into existence national AI strategies and plans for ramping up innovation. Businesses and think tanks have leaped onto the scene, hiring AI engineers and tech consultants to leverage what computer scientist Andrew Ng has even called the new ‘electricity’ of the 21st century.

As AI plays an exceedingly vital role in everyday life, how will your business leverage it to keep up and build forward?

In the wake of burgeoning markets, new ventures will quickly arise, each taking advantage of untapped data sources or unmet security needs.

And as your company aims to ride the wave of AI’s exponential growth, consider the following pointers to leverage AI and disrupt yourself before it reaches you first:

Determine where and how you can begin collecting critical data to inform your AI algorithms
Identify time-intensive processes that can be automated and accelerated within your company
Discern which global challenges can be expedited by hyper-fast, all-knowing minds

Remember: good data is vital fuel. Well-defined problems are the best compass. And the time to start implementing AI is now.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Yurchanka Siarhei / Shutterstock.com Continue reading

Posted in Human Robots