Tag Archives: military

#436462 Robotic Exoskeletons, Like This One, Are ...

When you imagine an exoskeleton, chances are it might look a bit like the Guardian XO from Sarcos Robotics. The XO is literally a robot you wear (or maybe, it wears you). The suit’s powered limbs sense your movements and match their position to yours with little latency to give you effortless superstrength and endurance—lifting 200 pounds will feel like 10.

A vision of robots and humankind working together in harmony. Now, isn’t that nice?

Of course, there isn’t anything terribly novel about an exoskeleton. We’ve seen plenty of concepts and demonstrations in the last decade. These include light exoskeletons tailored to industrial settings—some of which are being tested out by the likes of Honda—and healthcare exoskeletons that support the elderly or folks with disabilities.

Full-body powered robotic exoskeletons are a bit rarer, which makes the Sarcos suit pretty cool to look at. But like all things in robotics, practicality matters as much as vision. It’s worth asking: Will anyone buy and use the thing? Is it more than a concept video?

Sarcos thinks so, and they’re excited about it. “If you were to ask the question, what does 30 years and $300 million look like,” Sarcos CEO, Ben Wolff, told IEEE Spectrum, “you’re going to see it downstairs.”

The XO appears to check a few key boxes. For one, it’s user friendly. According to Sarcos, it only takes a few minutes for the uninitiated to strap in and get up to speed. Feeling comfortable doing work with the suit takes a few hours. This is thanks to a high degree of sensor-based automation that allows the robot to seamlessly match its user’s movements.

The XO can also operate for more than a few minutes. It has two hours of battery life, and with spares on hand, it can go all day. The batteries are hot-swappable, meaning you can replace a drained battery with a new one without shutting the system down.

The suit is aimed at manufacturing, where workers are regularly moving heavy stuff around. Additionally, Wolff told CNET, the suit could see military use. But that doesn’t mean Avatar-style combat. The XO, Wolff said, is primarily about logistics (lifting and moving heavy loads) and isn’t designed to be armored, so it won’t likely see the front lines.

The system will set customers back $100,000 a year to rent, which sounds like a lot, but for industrial or military purposes, the six-figure rental may not deter would-be customers if the suit proves itself a useful bit of equipment. (And it’s reasonable to imagine the price coming down as the technology becomes more commonplace and competitors arrive.)

Sarcos got into exoskeletons a couple decades ago and was originally funded by the military (like many robotics endeavors). Videos hit YouTube as long ago as 2008, but after announcing the company was taking orders for the XO earlier this year, Sarcos says they’ll deliver the first alpha units in January, which is a notable milestone.

Broadly, robotics has advanced a lot in recent years. YouTube sensations like Boston Dynamics have regularly earned millions of views (and inevitably, headlines stoking robot fear). They went from tethered treadmill sessions to untethered backflips off boxes. While today’s robots really are vastly superior to their ancestors, they’ve struggled to prove themselves useful. A counterpoint to flashy YouTube videos, the DARPA Robotics Challenge gave birth to another meme altogether. Robots falling over. Often and awkwardly.

This year marks some of the first commercial fruits of a few decades’ research. Boston Dynamics recently started offering its robot dog, Spot, to select customers in 2019. Whether this proves to be a headline-worthy flash in the pan or something sustainable remains to be seen. But between robots with more autonomy and exoskeletons like the XO, the exoskeleton variety will likely be easier to make more practical for various uses.

Whereas autonomous robots require highly advanced automation to navigate uncertain and ever-changing conditions—automation which, at the moment, remains largely elusive (though the likes of Google are pairing the latest AI with robots to tackle the problem)—an exoskeleton mainly requires physical automation. The really hard bits, like navigating and recognizing and interacting with objects, are outsourced to its human operator.

As it turns out, for today’s robots the best AI is still us. We may yet get chipper automatons like Rosy the Robot, but until then, for complicated applications, we’ll strap into our mechs for their strength and endurance, and they’ll wear us for our brains.

Image Credit: Sarcos Robotics Continue reading

Posted in Human Robots

#436255 Are cyborg employees in our future? ...

Image by 849356 from Pixabay There’s been a disturbing recent YouTube post – a video purportedly showed a military-type robot shooting at targets while itself being intermittently thumped and shoved, only to turn on and shoot one of its human handlers. However, a quick check over at Snopes proves the video is false. Kudos to …

The post Are cyborg employees in our future? Advancing AI could replace human workers appeared first on TFOT. Continue reading

Posted in Human Robots

#436220 How Boston Dynamics Is Redefining Robot ...

Gif: Bob O’Connor/IEEE Spectrum

With their jaw-dropping agility and animal-like reflexes, Boston Dynamics’ bioinspired robots have always seemed to have no equal. But that preeminence hasn’t stopped the company from pushing its technology to new heights, sometimes literally. Its latest crop of legged machines can trudge up and down hills, clamber over obstacles, and even leap into the air like a gymnast. There’s no denying their appeal: Every time Boston Dynamics uploads a new video to YouTube, it quickly racks up millions of views. These are probably the first robots you could call Internet stars.

Spot

Photo: Bob O’Connor

84 cm HEIGHT

25 kg WEIGHT

5.76 km/h SPEED

SENSING: Stereo cameras, inertial measurement unit, position/force sensors

ACTUATION: 12 DC motors

POWER: Battery (90 minutes per charge)

Boston Dynamics, once owned by Google’s parent company, Alphabet, and now by the Japanese conglomerate SoftBank, has long been secretive about its designs. Few publications have been granted access to its Waltham, Mass., headquarters, near Boston. But one morning this past August, IEEE Spectrum got in. We were given permission to do a unique kind of photo shoot that day. We set out to capture the company’s robots in action—running, climbing, jumping—by using high-speed cameras coupled with powerful strobes. The results you see on this page: freeze-frames of pure robotic agility.

We also used the photos to create interactive views, which you can explore online on our Robots Guide. These interactives let you spin the robots 360 degrees, or make them walk and jump on your screen.

Boston Dynamics has amassed a minizoo of robotic beasts over the years, with names like BigDog, SandFlea, and WildCat. When we visited, we focused on the two most advanced machines the company has ever built: Spot, a nimble quadruped, and Atlas, an adult-size humanoid.

Spot can navigate almost any kind of terrain while sensing its environment. Boston Dynamics recently made it available for lease, with plans to manufacture something like a thousand units per year. It envisions Spot, or even packs of them, inspecting industrial sites, carrying out hazmat missions, and delivering packages. And its YouTube fame has not gone unnoticed: Even entertainment is a possibility, with Cirque du Soleil auditioning Spot as a potential new troupe member.

“It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field,” Boston Dynamics CEO Marc Raibert says in an interview.

Atlas

Photo: Bob O’Connor

150 cm HEIGHT

80 kg WEIGHT

5.4 km/h SPEED

SENSING: Lidar and stereo vision

ACTUATION: 28 hydraulic actuators

POWER: Battery

Our other photographic subject, Atlas, is Boston Dynamics’ biggest celebrity. This 150-centimeter-tall (4-foot-11-inch-tall) humanoid is capable of impressive athletic feats. Its actuators are driven by a compact yet powerful hydraulic system that the company engineered from scratch. The unique system gives the 80-kilogram (176-pound) robot the explosive strength needed to perform acrobatic leaps and flips that don’t seem possible for such a large humanoid to do. Atlas has inspired a string of parody videos on YouTube and more than a few jokes about a robot takeover.

While Boston Dynamics excels at making robots, it has yet to prove that it can sell them. Ever since its founding in 1992 as a spin-off from MIT, the company has been an R&D-centric operation, with most of its early funding coming from U.S. military programs. The emphasis on commercialization seems to have intensified after the acquisition by SoftBank, in 2017. SoftBank’s founder and CEO, Masayoshi Son, is known to love robots—and profits.

The launch of Spot is a significant step for Boston Dynamics as it seeks to “productize” its creations. Still, Raibert says his long-term goals have remained the same: He wants to build machines that interact with the world dynamically, just as animals and humans do. Has anything changed at all? Yes, one thing, he adds with a grin. In his early career as a roboticist, he used to write papers and count his citations. Now he counts YouTube views.

In the Spotlight

Photo: Bob O’Connor

Boston Dynamics designed Spot as a versatile mobile machine suitable for a variety of applications. The company has not announced how much Spot will cost, saying only that it is being made available to select customers, which will be able to lease the robot. A payload bay lets you add up to 14 kilograms of extra hardware to the robot’s back. One of the accessories that Boston Dynamics plans to offer is a 6-degrees-of-freedom arm, which will allow Spot to grasp objects and open doors.

Super Senses

Photo: Bob O’Connor

Spot’s hardware is almost entirely custom-designed. It includes powerful processing boards for control as well as sensor modules for perception. The ­sensors are located on the front, rear, and sides of the robot’s body. Each module consists of a pair of stereo cameras, a wide-angle camera, and a texture projector, which enhances 3D sensing in low light. The sensors allow the robot to use the navigation method known as SLAM, or simultaneous localization and mapping, to get around autonomously.

Stepping Up

Photo: Bob O’Connor

In addition to its autonomous behaviors, Spot can also be steered by a remote operator with a game-style controller. But even when in manual mode, the robot still exhibits a high degree of autonomy. If there’s an obstacle ahead, Spot will go around it. If there are stairs, Spot will climb them. The robot goes into these operating modes and then performs the related actions completely on its own, without any input from the operator. To go down a flight of stairs, Spot walks backward, an approach Boston Dynamics says provides greater stability.

Funky Feet

Gif: Bob O’Connor/IEEE Spectrum

Spot’s legs are powered by 12 custom DC motors, each geared down to provide high torque. The robot can walk forward, sideways, and backward, and trot at a top speed of 1.6 meters per second. It can also turn in place. Other gaits include crawling and pacing. In one wildly popular YouTube video, Spot shows off its fancy footwork by dancing to the pop hit “Uptown Funk.”

Robot Blood

Photo: Bob O’Connor

Atlas is powered by a hydraulic system consisting of 28 actuators. These actuators are basically cylinders filled with pressurized fluid that can drive a piston with great force. Their high performance is due in part to custom servo valves that are significantly smaller and lighter than the aerospace models that Boston Dynamics had been using in earlier designs. Though not visible from the outside, the innards of an Atlas are filled with these hydraulic actuators as well as the lines of fluid that connect them. When one of those lines ruptures, Atlas bleeds the hydraulic fluid, which happens to be red.

Next Generation

Gif: Bob O’Connor/IEEE Spectrum

The current version of Atlas is a thorough upgrade of the original model, which was built for the DARPA Robotics Challenge in 2015. The newest robot is lighter and more agile. Boston Dynamics used industrial-grade 3D printers to make key structural parts, giving the robot greater strength-to-weight ratio than earlier designs. The next-gen Atlas can also do something that its predecessor, famously, could not: It can get up after a fall.

Walk This Way

Photo: Bob O’Connor

To control Atlas, an operator provides general steering via a manual controller while the robot uses its stereo cameras and lidar to adjust to changes in the environment. Atlas can also perform certain tasks autonomously. For example, if you add special bar-code-type tags to cardboard boxes, Atlas can pick them up and stack them or place them on shelves.

Biologically Inspired

Photos: Bob O’Connor

Atlas’s control software doesn’t explicitly tell the robot how to move its joints, but rather it employs mathematical models of the underlying physics of the robot’s body and how it interacts with the environment. Atlas relies on its whole body to balance and move. When jumping over an obstacle or doing acrobatic stunts, the robot uses not only its legs but also its upper body, swinging its arms to propel itself just as an athlete would.

This article appears in the December 2019 print issue as “By Leaps and Bounds.” Continue reading

Posted in Human Robots

#436123 A Path Towards Reasonable Autonomous ...

Editor’s Note: The debate on autonomous weapons systems has been escalating over the past several years as the underlying technologies evolve to the point where their deployment in a military context seems inevitable. IEEE Spectrum has published a variety of perspectives on this issue. In summary, while there is a compelling argument to be made that autonomous weapons are inherently unethical and should be banned, there is also a compelling argument to be made that autonomous weapons could potentially make conflicts less harmful, especially to non-combatants. Despite an increasing amount of international attention (including from the United Nations), progress towards consensus, much less regulatory action, has been slow. The following workshop paper on autonomous weapons systems policy is remarkable because it was authored by a group of experts with very different (and in some cases divergent) views on the issue. Even so, they were able to reach consensus on a roadmap that all agreed was worth considering. It’s collaborations like this that could be the best way to establish a reasonable path forward on such a contentious issue, and with the permission of the authors, we’re excited to be able to share this paper (originally posted on Georgia Tech’s Mobile Robot Lab website) with you in its entirety.

Autonomous Weapon Systems: A Roadmapping Exercise
Over the past several years, there has been growing awareness and discussion surrounding the possibility of future lethal autonomous weapon systems that could fundamentally alter humanity’s relationship with violence in war. Lethal autonomous weapons present a host of legal, ethical, moral, and strategic challenges. At the same time, artificial intelligence (AI) technology could be used in ways that improve compliance with the laws of war and reduce non-combatant harm. Since 2014, states have come together annually at the United Nations to discuss lethal autonomous weapons systems1. Additionally, a growing number of individuals and non-governmental organizations have become active in discussions surrounding autonomous weapons, contributing to a rapidly expanding intellectual field working to better understand these issues. While a wide range of regulatory options have been proposed for dealing with the challenge of lethal autonomous weapons, ranging from a preemptive, legally binding international treaty to reinforcing compliance with existing laws of war, there is as yet no international consensus on a way forward.

The lack of an international policy consensus, whether codified in a formal document or otherwise, poses real risks. States could fall victim to a security dilemma in which they deploy untested or unsafe weapons that pose risks to civilians or international stability. Widespread proliferation could enable illicit uses by terrorists, criminals, or rogue states. Alternatively, a lack of guidance on which uses of autonomy are acceptable could stifle valuable research that could reduce the risk of non-combatant harm.

International debate thus far has predominantly centered around whether or not states should adopt a preemptive, legally-binding treaty that would ban lethal autonomous weapons before they can be built. Some of the authors of this document have called for such a treaty and would heartily support it, if states were to adopt it. Other authors of this document have argued an overly expansive treaty would foreclose the possibility of using AI to mitigate civilian harm. Options for international action are not binary, however, and there are a range of policy options that states should consider between adopting a comprehensive treaty or doing nothing.

The purpose of this paper is to explore the possibility of a middle road. If a roadmap could garner sufficient stakeholder support to have significant beneficial impact, then what elements could it contain? The exercise whose results are presented below was not to identify recommendations that the authors each prefer individually (the authors hold a broad spectrum of views), but instead to identify those components of a roadmap that the authors are all willing to entertain2. We, the authors, invite policymakers to consider these components as they weigh possible actions to address concerns surrounding autonomous weapons3.

Summary of Issues Surrounding Autonomous Weapons

There are a variety of issues that autonomous weapons raise, which might lend themselves to different approaches. A non-exhaustive list of issues includes:

The potential for beneficial uses of AI and autonomy that could improve precision and reliability in the use of force and reduce non-combatant harm.
Uncertainty about the path of future technology and the likelihood of autonomous weapons being used in compliance with the laws of war, or international humanitarian law (IHL), in different settings and on various timelines.
A desire for some degree of human involvement in the use of force. This has been expressed repeatedly in UN discussions on lethal autonomous weapon systems in different ways.
Particular risks surrounding lethal autonomous weapons specifically targeting personnel as opposed to vehicles or materiel.
Risks regarding international stability.
Risk of proliferation to terrorists, criminals, or rogue states.
Risk that autonomous systems that have been verified to be acceptable can be made unacceptable through software changes.
The potential for autonomous weapons to be used as scalable weapons enabling a small number of individuals to inflict very large-scale casualties at low cost, either intentionally or accidentally.

Summary of Components

A time-limited moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems4. Such a moratorium could include exceptions for certain classes of weapons.
Define guiding principles for human involvement in the use of force.
Develop protocols and/or technological means to mitigate the risk of unintentional escalation due to autonomous systems.
Develop strategies for preventing proliferation to illicit uses, such as by criminals, terrorists, or rogue states.
Conduct research to improve technologies and human-machine systems to reduce non-combatant harm and ensure IHL compliance in the use of future weapons.

Component 1:

States should consider adopting a five-year, renewable moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems. Anti-personnel lethal autonomous weapon systems are defined as weapons systems that, once activated, can select and engage dismounted human targets without further intervention by a human operator, possibly excluding systems such as:

Fixed-point defensive systems with human supervisory control to defend human-occupied bases or installations
Limited, proportional, automated counter-fire systems that return fire in order to provide immediate, local defense of humans
Time-limited pursuit deterrent munitions or systems
Autonomous weapon systems with size above a specified explosive weight limit that select as targets hand-held weapons, such as rifles, machine guns, anti-tank weapons, or man-portable air defense systems, provided there is adequate protection for non-combatants and ensuring IHL compliance5

The moratorium would not apply to:

Anti-vehicle or anti-materiel weapons
Non-lethal anti-personnel weapons
Research on ways of improving autonomous weapon technology to reduce non-combatant harm in future anti-personnel lethal autonomous weapon systems
Weapons that find, track, and engage specific individuals whom a human has decided should be engaged within a limited predetermined period of time and geographic region

Motivation:

This moratorium would pause development and deployment of anti-personnel lethal autonomous weapons systems to allow states to better understand the systemic risks of their use and to perform research that improves their safety, understandability, and effectiveness. Particular objectives could be to:

ensure that, prior to deployment, anti-personnel lethal autonomous weapons can be used in ways that are equal to or outperform humans in their compliance with IHL (other conditions may also apply prior to deployment being acceptable);
lay the groundwork for a potentially legally binding diplomatic instrument; and
decrease the geopolitical pressure on countries to deploy anti-personnel lethal autonomous weapons before they are reliable and well-understood.

Compliance Verification:

As part of a moratorium, states could consider various approaches to compliance verification. Potential approaches include:

Developing an industry cooperation regime analogous to that mandated under the Chemical Weapons Convention, whereby manufacturers must know their customers and report suspicious purchases of significant quantities of items such as fixed-wing drones, quadcopters, and other weaponizable robots.
Encouraging states to declare inventories of autonomous weapons for the purposes of transparency and confidence-building.
Facilitating scientific exchanges and military-to-military contacts to increase trust, transparency, and mutual understanding on topics such as compliance verification and safe operation of autonomous systems.
Designing control systems to require operator identity authentication and unalterable records of operation; enabling post-hoc compliance checks in case of plausible evidence of non-compliant autonomous weapon attacks.
Relating the quantity of weapons to corresponding capacities for human-in-the-loop operation of those weapons.
Designing weapons with air-gapped firing authorization circuits that are connected to the remote human operator but not to the on-board automated control system.
More generally, avoiding weapon designs that enable conversion from compliant to non-compliant categories or missions solely by software updates.
Designing weapons with formal proofs of relevant properties—e.g., the property that the weapon is unable to initiate an attack without human authorization. Proofs can, in principle, be provided using cryptographic techniques that allow the proofs to be checked by a third party without revealing any details of the underlying software.
Facilitate access to (non-classified) AI resources (software, data, methods for ensuring safe operation) to all states that remain in compliance and participate in transparency activities.

Component 2:

Define and universalize guiding principles for human involvement in the use of force.

Humans, not machines, are legal and moral agents in military operations.
It is a human responsibility to ensure that any attack, including one involving autonomous weapons, complies with the laws of war.
Humans responsible for initiating an attack must have sufficient understanding of the weapons, the targets, the environment and the context for use to determine whether that particular attack is lawful.
The attack must be bounded in space, time, target class, and means of attack in order for the determination about the lawfulness of that attack to be meaningful.
Militaries must invest in training, education, doctrine, policies, system design, and human-machine interfaces to ensure that humans remain responsible for attacks.

Component 3:

Develop protocols and/or technological means to mitigate the risk of unintentional escalation due to autonomous systems.

Specific potential measures include:

Developing safe rules for autonomous system behavior when in proximity to adversarial forces to avoid unintentional escalation or signaling. Examples include:

No-first-fire policy, so that autonomous weapons do not initiate hostilities without explicit human authorization.
A human must always be responsible for providing the mission for an autonomous system.
Taking steps to clearly distinguish exercises, patrols, reconnaissance, or other peacetime military operations from attacks in order to limit the possibility of reactions from adversary autonomous systems, such as autonomous air or coastal defenses.

Developing resilient communications links to ensure recallability of autonomous systems. Additionally, militaries should refrain from jamming others’ ability to recall their autonomous systems in order to afford the possibility of human correction in the event of unauthorized behavior.

Component 4:

Develop strategies for preventing proliferation to illicit uses, such as by criminals, terrorists, or rogue states:

Targeted multilateral controls to prevent large-scale sale and transfer of weaponizable robots and related military-specific components for illicit use.
Employ measures to render weaponizable robots less harmful (e.g., geofencing; hard-wired kill switch; onboard control systems largely implemented in unalterable, non-reprogrammable hardware such as application-specific integrated circuits).

Component 5:

Conduct research to improve technologies and human-machine systems to reduce non-combatant harm and ensure IHL-compliance in the use of future weapons, including:

Strategies to promote human moral engagement in decisions about the use of force
Risk assessment for autonomous weapon systems, including the potential for large-scale effects, geopolitical destabilization, accidental escalation, increased instability due to uncertainty about the relative military balance of power, and lowering thresholds to initiating conflict and for violence within conflict
Methodologies for ensuring the reliability and security of autonomous weapon systems
New techniques for verification, validation, explainability, characterization of failure conditions, and behavioral specifications.

About the Authors (in alphabetical order)

Ronald Arkin directs the Mobile Robot Laboratory at Georgia Tech.

Leslie Kaelbling is co-director of the Learning and Intelligent Systems Group at MIT.

Stuart Russell is a professor of computer science and engineering at UC Berkeley.

Dorsa Sadigh is an assistant professor of computer science and of electrical engineering at Stanford.

Paul Scharre directs the Technology and National Security Program at the Center for a New American Security (CNAS).

Bart Selman is a professor of computer science at Cornell.

Toby Walsh is a professor of artificial intelligence at the University of New South Wales (UNSW) Sydney.

The authors would like to thank Max Tegmark for organizing the three-day meeting from which this document was produced.

1 Autonomous Weapons System (AWS): A weapon system that, once activated, can select and engage targets without further intervention by a human operator. BACK TO TEXT↑

2 There is no implication that some authors would not personally support stronger recommendations. BACK TO TEXT↑

3 For ease of use, this working paper will frequently shorten “autonomous weapon system” to “autonomous weapon.” The terms should be treated as synonymous, with the understanding that “weapon” refers to the entire system: sensor, decision-making element, and munition. BACK TO TEXT↑

4 Anti-personnel lethal autonomous weapon system: A weapon system that, once activated, can select and engage dismounted human targets with lethal force and without further intervention by a human operator. BACK TO TEXT↑

5 The authors are not unanimous about this item because of concerns about ease of repurposing for mass-casualty missions targeting unarmed humans. The purpose of the lower limit on explosive payload weight would be to minimize the risk of such repurposing. There is precedent for using explosive weight limit as a mechanism of delineating between anti-personnel and anti-materiel weapons, such as the 1868 St. Petersburg Declaration Renouncing the Use, in Time of War, of Explosive Projectiles Under 400 Grammes Weight. BACK TO TEXT↑ Continue reading

Posted in Human Robots

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots