Tag Archives: military

#432021 Unleashing Some of the Most Ambitious ...

At Singularity University, we are unleashing a generation of women who are smashing through barriers and starting some of the most ambitious technology companies on the planet.

Singularity University was founded in 2008 to empower leaders to use exponential technologies to solve our world’s biggest challenges. Our flagship program, the Global Solutions Program, has historically brought 80 entrepreneurs from around the world to Silicon Valley for 10 weeks to learn about exponential technologies and create moonshot startups that improve the lives of a billion people within a decade.

After nearly 10 years of running this program, we can say that about 70 percent of our successful startups have been founded or co-founded by female entrepreneurs (see below for inspiring examples of their work). This is in sharp contrast to the typical 10–20 percent of venture-backed tech companies that have a female founder, as reported by TechCrunch.

How are we so dramatically changing the game? While 100 percent of the credit goes to these courageous women, as both an alumna of the Global Solutions Program and our current vice chair of Global Grand Challenges, I want to share my reflections on what has worked.

At the most basic level, it is essential to deeply believe in the inherent worth, intellectual genius, and profound entrepreneurial caliber of women. While this may seem obvious, this is not the way our world currently thinks—we live in a world that sees women’s ideas, contributions, work, and existence as inherently less valuable than men’s.

For example, a 2017 Harvard Business Review article noted that even when women engage in the same behaviors and work as men, their work is considered less valuable simply because a woman did the job. An additional 2017 Harvard Business Review article showed that venture capitalists are significantly less likely to invest in female entrepreneurs and are more likely to ask men questions about the potential success of their companies while grilling women about the potential downfalls of their companies.

This doubt and lack of recognition of the genius and caliber of women is also why women are still paid less than men for completing identical work. Further, it’s why women’s work often gets buried in “number two” support roles of men in leadership roles and why women are expected to take on second shifts at home managing tedious household chores in addition to their careers. I would also argue these views as well as the rampant sexual harassment, assault, and violence against women that exists today stems from stubborn, historical, patriarchal views of women as living for the benefit of men, rather than for their own sovereignty and inherent value.

As with any other business, Singularity University has not been immune to these biases but is resolutely focused on helping women achieve intellectual genius and global entrepreneurial caliber by harnessing powerful exponential technologies.

We create an environment where women can physically and intellectually thrive free of harassment to reach their full potential, and we are building a broader ecosystem of alumni and partners around the world who not only support our female entrepreneurs throughout their entrepreneurial journeys, but who are also sparking and leading systemic change in their own countries and communities.

Respecting the Intellectual Genius and Entrepreneurial Caliber of Women
The entrepreneurial legends of our time—Steve Jobs, Elon Musk, Mark Zuckerberg, Bill Gates, Jeff Bezos, Larry Page, Sergey Brin—are men who have all built their empires using exponential technologies. Exponential technologies helped these men succeed faster and with greater impact due to Moore’s Law and the Law of Accelerating Returns which states that any digital technology (such as computing, software, artificial intelligence, robotics, quantum computing, biotechnology, nanotechnology, etc.) will become more sophisticated while dramatically falling in price, enabling rapid scaling.

Knowing this, an entrepreneur can plot her way to an ambitious global solution over time, releasing new applications just as the technology and market are ready. Furthermore, these rapidly advancing technologies often converge to create new tools and opportunities for innovators to come up with novel solutions to challenges that were previously impossible to solve in the past.

For various reasons, women have not pursued exponential technologies as aggressively as men (or were prevented or discouraged from doing so).

While more women are founding firms at a higher rate than ever in wealthy countries like the United States, the majority are small businesses in linear industries that have been around for hundreds of years, such as social assistance, health, education, administrative, or consulting services. In lower-income countries, international aid agencies and nonprofits often encourage women to pursue careers in traditional handicrafts, micro-enterprise, and micro-finance. While these jobs have historically helped women escape poverty and gain financial independence, they have done little to help women realize the enormous power, influence, wealth, and ability to transform the world for the better that comes from building companies, nonprofits, and solutions grounded in exponential technologies.

We need women to be working with exponential technologies today in order to be powerful leaders in the future.

Participants who enroll in our Global Solutions Program spend the first few weeks of the program learning about exponential technologies from the world’s experts and the final weeks launching new companies or nonprofits in their area of interest. We require that women (as well as men) utilize exponential technologies as a condition of the program.

In this sense, at Singularity University women start their endeavors with all of us believing and behaving in a way that assumes they can achieve global impact at the level of our world’s most legendary entrepreneurs.

Creating an Environment Where Woman Can Thrive
While challenging women to embrace exponential technologies is essential, it is also important to create an environment where women can thrive. In particular, this means ensuring women feel at home on our campus by ensuring gender diversity, aggressively addressing sexual harassment, and flipping the traditional culture from one that penalizes women, to one that values and supports them.

While women were initially only a small minority of our Global Solutions Program, in 2014, we achieved around 50% female attendance—a statistic that has since held over the years.

This is not due to a quota—every year we turn away extremely qualified women from our program (and are working on reformulating the program to allow more people to participate in the future.) While part of our recruiting success is due to the efforts of our marketing team, we also benefited from the efforts of some of our early female founders, staff, faculty, and alumnae including Susan Fonseca, Emeline Paat-Dahlstrom, Kathryn Myronuk, Lajuanda Asemota, Chiara Giovenzana, and Barbara Silva Tronseca.

As early champions of Singularity University these women not only launched diversity initiatives and personally reached out to women, but were crucial role models holding leadership roles in our community. In addition, Fonseca and Silva also both created multiple organizations and initiatives outside of (or in conjunction with) the university that produced additional pipelines of female candidates. In particular, Fonseca founded Women@TheFrontier as well as other organizations focusing on women, technology and innovation, and Silva founded BestInnovation (a woman’s accelerator in Latin America), as well as led Singularity University’s Chilean Chapter and founded the first SingularityU Summit in Latin America.

These women’s efforts in globally scaling Singularity University have been critical in ensuring woman around the world now see Singularity University as a place where they can lead and shape the future.

Also, thanks to Google (Alphabet) and many of our alumni and partners, we were able to provide full scholarships to any woman (or man) to attend our program regardless of their economic status. Google committed significant funding for full scholarships while our partners around the world also hosted numerous Global Impact Competitions, where entrepreneurs pitched their solutions to their local communities with the winners earning a full scholarship funded by our partners to attend the Global Solution Program as their prize.

Google and our partners’ support helped individuals attend our program and created a wider buzz around exponential technology and social change around the world in local communities. It led to the founding of 110 SU chapters in 55 countries.

Another vital aspect of our work in supporting women has been trying to create a harassment-free environment. Throughout the Silicon Valley, more than 60% of women convey that while they are trying to build their companies or get their work done, they are also dealing with physical and sexual harassment while being demeaned and excluded in other ways in the workplace. We have taken actions to educate and train our staff on how to deal with situations should they occur. All staff receives training on harassment when they join Singularity University, and all Global Solutions Program participants attend mandatory trainings on sexual harassment when they first arrive on campus. We also have male and female wellness counselors available that can offer support to both individuals and teams of entrepreneurs throughout the entire program.

While at a minimum our campus must be physically safe for women, we also strive to create a culture that values women and supports them in the additional challenges and expectations they face. For example, one of our 2016 female participants, Van Duesterberg, was pregnant during the program and said that instead of having people doubt her commitment to her startup or make her prove she could handle having a child and running a start-up at the same time, people went out of their way to help her.

“I was the epitome of a person not supposed to be doing a startup,” she said. “I was pregnant and would need to take care of my child. But Singularity University was supportive and encouraging. They made me feel super-included and that it was possible to do both. I continue to come back to campus even though the program is over because the network welcomes me and supports me rather than shuts me out because of my physical limitations. Rather than making me feel I had to prove myself, everyone just understood me and supported me, whether it was bringing me healthy food or recommending funders.”

Another strength that we have in supporting women is that after the Global Solutions Program, entrepreneurs have access to a much larger ecosystem.

Many entrepreneurs partake in SU Ventures, which can provide further support to startups as they develop, and we now have a larger community of over 200,000 people in almost every country. These members have often attended other Singularity University programs, events and are committed to our vision of the future. These women and men consist of business executives, Fortune 500 companies, investors, nonprofit and government leaders, technologists, members of the media, and other movers and shakers in the world. They have made introductions for our founders, collaborated with them on business ventures, invested in them and showcased their work at high profile events around the world.

Building for the Future
While our Global Solutions Program is making great strides in supporting female entrepreneurs, there is always more work to do. We are now focused on achieving the same degree of female participation across all of our programs and actively working to recruit and feature more female faculty and speakers on stage. As our community grows and scales around the world, we are also intent at how to best uphold our values and policies around sexual harassment across diverse locations and cultures. And like all businesses everywhere, we are focused on recruiting more women to serve at senior leadership levels within SU. As we make our way forward, we hope that you will join us in boldly leading this change and recognizing the genius and power of female entrepreneurs.

Meet Some of Our Female Moonshots
While we have many remarkable female entrepreneurs in the Singularity University community, the list below features a few of the women who have founded or co-founded companies at the Global Solutions Program that have launched new industries and are on their way to changing the way our world works for millions if not billions of people.

Jessica Scorpio co-founded Getaround in 2009. Getaround was one of the first car-sharing service platforms allowing anyone to rent out their car using a smartphone app. GetAround was a revolutionary idea in 2009, not only because smartphones and apps were still in their infancy, but because it was unthinkable that a technology startup could disrupt the major entrenched car, transport, and logistics companies. Scorpio’s early insights and pioneering entrepreneurial work brought to life new ways that humans relate to car sharing and the future self-driving car industry. Scorpio and Getaround have won numerous awards, and Getaround now serves over 200,000 members.

Paola Santana co-founded Matternet in 2011, which pioneered the commercial drone transport industry. In 2011, only military, hobbyists or the film industry used drones. Matternet demonstrated that drones could be used for commercial transport in short point-to-point deliveries for high-value goods laying the groundwork for drone transport around the world as well as some of the early thinking behind the future flying car industry. Santana was also instrumental in shaping regulations for the use of commercial drones around the world, making the industry possible.

Sara Naseri co-founded Qurasense in 2014, a life sciences start-up that analyzes women’s health through menstrual blood allowing women to track their health every month. Naseri is shifting our understanding of women’s menstrual blood as a waste product and something “not to be talked about,” to a rich, non-invasive, abundant source of information about women’s health.

Abi Ramanan co-founded ImpactVision in 2015, a software company that rapidly analyzes the quality and characteristics of food through hyperspectral images. Her long-term vision is to digitize food supply chains to reduce waste and fraud, given that one-third of all food is currently wasted before it reaches our plates. Ramanan is also helping the world understand that hyperspectral technology can be used in many industries to help us “see the unseen” and augment our ability to sense and understand what is happening around us in a much more sophisticated way.

Anita Schjøll Brede and Maria Ritola co-founded Iris AI in 2015, an artificial intelligence company that is building an AI research assistant that drastically improves the efficiency of R&D research and breaks down silos between different industries. Their long-term vision is for Iris AI to become smart enough that she will become a scientist herself. Fast Company named Iris AI one of the 10 most innovative artificial intelligence companies for 2017.

Hla Hla Win co-founded 360ed in 2016, a startup that conducts teacher training and student education through virtual reality and augmented reality in Myanmar. They have already connected teachers from 128 private schools in Myanmar with schools teaching 21st-century skills in Silicon Valley and around the world. Their moonshot is to build a platform where any teacher in the world can share best practices in teachers’ training. As they succeed, millions of children in some of the poorest parts of the world will have access to a 21st-century education.

Min FitzGerald and Van Duesterberg cofounded Nutrigene in 2017, a startup that ships freshly formulated, tailor-made supplement elixirs directly to consumers. Their long-term vision is to help people optimize their health using actionable data insights, so people can take a guided, tailored approaching to thriving into longevity.

Anna Skaya co-founded Basepaws in 2016, which created the first genetic test for cats and is building a community of citizen scientist pet owners. They are creating personalized pet products such as supplements, therapeutics, treats, and toys while also developing a database of genetic data for future research that will help both humans and pets over the long term.

Olivia Ramos co-founded Deep Blocks in 2016, a startup using artificial intelligence to integrate and streamline the processes of architecture, pre-construction, and real estate. As digital technologies, artificial intelligence, and robotics advance, it no longer makes sense for these industries to exist separately. Ramos recognized the tremendous value and efficiency that it is now possible to unlock with exponential technologies and creating an integrated industry in the future.

Please also visit our website to learn more about other female entrepreneurs, staff and faculty who are pioneering the future through exponential technologies. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#432009 How Swarm Intelligence Is Making Simple ...

As a group, simple creatures following simple rules can display a surprising amount of complexity, efficiency, and even creativity. Known as swarm intelligence, this trait is found throughout nature, but researchers have recently begun using it to transform various fields such as robotics, data mining, medicine, and blockchains.

Ants, for example, can only perform a limited range of functions, but an ant colony can build bridges, create superhighways of food and information, wage war, and enslave other ant species—all of which are beyond the comprehension of any single ant. Likewise, schools of fish, flocks of birds, beehives, and other species exhibit behavior indicative of planning by a higher intelligence that doesn’t actually exist.

It happens by a process called stigmergy. Simply put, a small change by a group member causes other members to behave differently, leading to a new pattern of behavior.

When an ant finds a food source, it marks the path with pheromones. This attracts other ants to that path, leads them to the food source, and prompts them to mark the same path with more pheromones. Over time, the most efficient route will become the superhighway, as the faster and easier a path is, the more ants will reach the food and the more pheromones will be on the path. Thus, it looks as if a more intelligent being chose the best path, but it emerged from the tiny, simple changes made by individuals.

So what does this mean for humans? Well, a lot. In the past few decades, researchers have developed numerous algorithms and metaheuristics, such as ant colony optimization and particle swarm optimization, and they are rapidly being adopted.

Swarm Robotics
A swarm of robots would work on the same principles as an ant colony: each member has a simple set of rules to follow, leading to self-organization and self-sufficiency.

For example, researchers at Georgia Robotics and InTelligent Systems (GRITS) created a small swarm of simple robots that can spell and play piano. The robots cannot communicate, but based solely on the position of surrounding robots, they are able to use their specially-created algorithm to determine the optimal path to complete their task.

This is also immensely useful for drone swarms.

Last February, Ehang, an aviation company out of China, created a swarm of a thousand drones that not only lit the sky with colorful, intricate displays, but demonstrated the ability to improvise and troubleshoot errors entirely autonomously.

Further, just recently, the University of Cambridge and Koc University unveiled their idea for what they call the Energy Neutral Internet of Drones. Amazingly, this drone swarm would take initiative to share information or energy with other drones that did not receive a communication or are running low on energy.

Militaries all of the world are utilizing this as well.

Last year, the US Department of Defense announced it had successfully tested a swarm of miniature drones that could carry out complex missions cheaper and more efficiently. They claimed, “The micro-drones demonstrated advanced swarm behaviors such as collective decision-making, adaptive formation flying, and self-healing.”

Some experts estimate at least 30 nations are actively developing drone swarms—and even submersible drones—for military missions, including intelligence gathering, missile defense, precision missile strikes, and enhanced communication.

NASA also plans on deploying swarms of tiny spacecraft for space exploration, and the medical community is looking into using swarms of nanobots for precision delivery of drugs, microsurgery, targeting toxins, and biological sensors.

What If Humans Are the Ants?
The strength of any blockchain comes from the size and diversity of the community supporting it. Cryptocurrencies like Bitcoin, Ethereum, and Litecoin are driven by the people using, investing in, and, most importantly, mining them so their blockchains can function. Without an active community, or swarm, their blockchains wither away.

When viewed from a great height, a blockchain performs eerily like an ant colony in that it will naturally find the most efficient way to move vast amounts of information.

Miners compete with each other to perform the complex calculations necessary to add another block, for which the winner is rewarded with the blockchain’s native currency and agreed-upon fees. Of course, the miner with the more powerful computers is more likely to win the reward, thereby empowering the winner’s ability to mine and receive even more rewards. Over time, fewer and fewer miners are going to exist, as the winners are able to more efficiently shoulder more of the workload, in much the same way that ants build superhighways.

Further, a company called Unanimous AI has developed algorithms that allow humans to collectively make predictions. So far, the AI algorithms and their human participants have made some astoundingly accurate predictions, such as the first four winning horses of the Kentucky Derby, the Oscar winners, the Stanley Cup winners, and others. The more people involved in the swarm, the greater their predictive power will be.

To be clear, this is not a prediction based on group consensus. Rather, the swarm of humans uses software to input their opinions in real time, thus making micro-changes to the rest of the swarm and the inputs of other members.

Studies show that swarm intelligence consistently outperforms individuals and crowds working without the algorithms. While this is only the tip of the iceberg, some have suggested swarm intelligence can revolutionize how doctors diagnose a patient or how products are marketed to consumers. It might even be an essential step in truly creating AI.

While swarm intelligence is an essential part of many species’ success, it’s only a matter of time before humans harness its effectiveness as well.

Image Credit: Nature Bird Photography / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431371 Amazon Is Quietly Building the Robots of ...

Science fiction is the siren song of hard science. How many innocent young students have been lured into complex, abstract science, technology, engineering, or mathematics because of a reckless and irresponsible exposure to Arthur C. Clarke at a tender age? Yet Arthur C. Clarke has a very famous quote: “Any sufficiently advanced technology is indistinguishable from magic.”
It’s the prospect of making that… ahem… magic leap that entices so many people into STEM in the first place. A magic leap that would change the world. How about, for example, having humanoid robots? They could match us in dexterity and speed, perceive the world around them as we do, and be programmed to do, well, more or less anything we can do.
Such a technology would change the world forever.
But how will it arrive? While true sci-fi robots won’t get here right away—the pieces are coming together, and the company best developing them at the moment is Amazon. Where others have struggled to succeed, Amazon has been quietly progressing. Notably, Amazon has more than just a dream, it has the most practical of reasons driving it into robotics.
This practicality matters. Technological development rarely proceeds by magic; it’s a process filled with twists, turns, dead-ends, and financial constraints. New technologies often have to answer questions like “What is this good for, are you being realistic?” A good strategy, then, can be to build something more limited than your initial ambition, but useful for a niche market. That way, you can produce a prototype, have a reasonable business plan, and turn a profit within a decade. You might call these “stepping stone” applications that allow for new technologies to be developed in an economically viable way.
You need something you can sell to someone, soon: that’s how you get investment in your idea. It’s this model that iRobot, developers of the Roomba, used: migrating from military prototypes to robotic vacuum cleaners to become the “boring, successful robot company.” Compare this to Willow Garage, a genius factory if ever there was one: they clearly had ambitions towards a general-purpose, multi-functional robot. They built an impressive device—PR2—and programmed the operating system, ROS, that is still the industry and academic standard to this day.
But since they were unable to sell their robot for much less than $250,000, it was never likely to be a profitable business. This is why Willow Garage is no more, and many workers at the company went into telepresence robotics. Telepresence is essentially videoconferencing with a fancy robot attached to move the camera around. It uses some of the same software (for example, navigation and mapping) without requiring you to solve difficult problems of full autonomy for the robot, or manipulating its environment. It’s certainly one of the stepping-stone areas that various companies are investigating.
Another approach is to go to the people with very high research budgets: the military.
This was the Boston Dynamics approach, and their incredible achievements in bipedal locomotion saw them getting snapped up by Google. There was a great deal of excitement and speculation about Google’s “nightmare factory” whenever a new slick video of a futuristic militarized robot surfaced. But Google broadly backed away from Replicant, their robotics program, and Boston Dynamics was sold. This was partly due to PR concerns over the Terminator-esque designs, but partly because they didn’t see the robotics division turning a profit. They hadn’t found their stepping stones.
This is where Amazon comes in. Why Amazon? First off, they just announced that their profits are up by 30 percent, and yet the company is well-known for their constantly-moving Day One philosophy where a great deal of the profits are reinvested back into the business. But lots of companies have ambition.
One thing Amazon has that few other corporations have, as well as big financial resources, is viable stepping stones for developing the technologies needed for this sort of robotics to become a reality. They already employ 100,000 robots: these are of the “pragmatic, boring, useful” kind that we’ve profiled, which move around the shelves in warehouses. These robots are allowing Amazon to develop localization and mapping software for robots that can autonomously navigate in the simple warehouse environment.
But their ambitions don’t end there. The Amazon Robotics Challenge is a multi-million dollar competition, open to university teams, to produce a robot that can pick and package items in warehouses. The problem of grasping and manipulating a range of objects is not a solved one in robotics, so this work is still done by humans—yet it’s absolutely fundamental for any sci-fi dream robot.
Google, for example, attempted to solve this problem by hooking up 14 robot hands to machine learning algorithms and having them grasp thousands of objects. Although results were promising, the 10 to 20 percent failure rate for grasps is too high for warehouse use. This is a perfect stepping stone for Amazon; should they crack the problem, they will likely save millions in logistics.
Another area where humanoid robotics—especially bipedal locomotion, or walking, has been seriously suggested—is in the last mile delivery problem. Amazon has shown willingness to be creative in this department with their notorious drone delivery service. In other words, it’s all very well to have your self-driving car or van deliver packages to people’s doors, but who puts the package on the doorstep? It’s difficult for wheeled robots to navigate the full range of built environments that exist. That’s why bipedal robots like CASSIE, developed by Oregon State, may one day be used to deliver parcels.
Again: no one more than Amazon stands to profit from cracking this technology. The line from robotics research to profit is very clear.
So, perhaps one day Amazon will have robots that can move around and manipulate their environments. But they’re also working on intelligence that will guide those robots and make them truly useful for a variety of tasks. Amazon has an AI, or at least the framework for an AI: it’s called Alexa, and it’s in tens of millions of homes. The Alexa Prize, another multi-million-dollar competition, is attempting to make Alexa more social.
To develop a conversational AI, at least using the current methods of machine learning, you need data on tens of millions of conversations. You need to understand how people will try to interact with the AI. Amazon has access to this in Alexa, and they’re using it. As owners of the leading voice-activated personal assistant, they have an ecosystem of developers creating apps for Alexa. It will be integrated with the smart home and the Internet of Things. It is a very marketable product, a stepping stone for robot intelligence.
What’s more, the company can benefit from its huge sales infrastructure. For Amazon, having an AI in your home is ideal, because it can persuade you to buy more products through its website. Unlike companies like Google, Amazon has an easy way to make a direct profit from IoT devices, which could fuel funding.
For a humanoid robot to be truly useful, though, it will need vision and intelligence. It will have to understand and interpret its environment, and react accordingly. The way humans learn about our environment is by getting out and seeing it. This is something that, for example, an Alexa coupled to smart glasses would be very capable of doing. There are rumors that Alexa’s AI will soon be used in security cameras, which is an ideal stepping stone task to train an AI to process images from its environment, truly perceiving the world and any threats it might contain.
It’s a slight exaggeration to say that Amazon is in the process of building a secret robot army. The gulf between our sci-fi vision of robots that can intelligently serve us, rather than mindlessly assemble cars, is still vast. But in quietly assembling many of the technologies needed for intelligent, multi-purpose robotics—and with the unique stepping stones they have along the way—Amazon might just be poised to leap that gulf. As if by magic.
Image Credit: Denis Starostin / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430868 These 7 Forces Are Changing the World at ...

It was the Greek philosopher Heraclitus who first said, “The only thing that is constant is change.”
He was onto something. But even he would likely be left speechless at the scale and pace of change the world has experienced in the past 100 years—not to mention the past 10.
Since 1917, the global population has gone from 1.9 billion people to 7.5 billion. Life expectancy has more than doubled in many developing countries and risen significantly in developed countries. In 1917 only eight percent of homes had phones—in the form of landline telephones—while today more than seven in 10 Americans own a smartphone—aka, a supercomputer that fits in their pockets.
And things aren’t going to slow down anytime soon. In a talk at Singularity University’s Global Summit this week in San Francisco, SU cofounder and chairman Peter Diamandis told the audience, “Tomorrow’s speed of change will make today look like we’re crawling.” He then shared his point of view about some of the most important factors driving this accelerating change.
Peter Diamandis at Singularity University’s Global Summit in San Francisco.
Computation
In 1965, Gordon Moore (cofounder of Intel) predicted computer chips would double in power and halve in cost every 18 to 24 months. What became known as Moore’s Law turned out to be accurate, and today affordable computer chips contain a billion or more transistors spaced just nanometers apart.
That means computers can do exponentially more calculations per second than they could thirty, twenty, or ten years ago—and at a dramatically lower cost. This in turn means we can generate a lot more information, and use computers for all kinds of applications they wouldn’t have been able to handle in the past (like diagnosing rare forms of cancer, for example).
Convergence
Increased computing power is the basis for a myriad of technological advances, which themselves are converging in ways we couldn’t have imagined a couple decades ago. As new technologies advance, the interactions between various subsets of those technologies create new opportunities that accelerate the pace of change much more than any single technology can on its own.
A breakthrough in biotechnology, for example, might spring from a crucial development in artificial intelligence. An advance in solar energy could come about by applying concepts from nanotechnology.
Interface Moments
Technology is becoming more accessible even to the most non-techy among us. The internet was once the domain of scientists and coders, but these days anyone can make their own web page, and browsers make those pages easily searchable. Now, interfaces are opening up areas like robotics or 3D printing.
As Diamandis put it, “You don’t need to know how to code to 3D print an attachment for your phone. We’re going from mind to materialization, from intentionality to implication.”
Artificial intelligence is what Diamandis calls “the ultimate interface moment,” enabling everyone who can speak their mind to connect and leverage exponential technologies.
Connectivity
Today there are about three billion people around the world connected to the internet—that’s up from 1.8 billion in 2010. But projections show that by 2025 there will be eight billion people connected. This is thanks to a race between tech billionaires to wrap the Earth in internet; Elon Musk’s SpaceX has plans to launch a network of 4,425 satellites to get the job done, while Google’s Project Loon is using giant polyethylene balloons for the task.
These projects will enable five billion new minds to come online, and those minds will have access to exponential technologies via interface moments.
Sensors
Diamandis predicts that after we establish a 5G network with speeds of 10–100 Gbps, a proliferation of sensors will follow, to the point that there’ll be around 100,000 sensors per city block. These sensors will be equipped with the most advanced AI, and the combination of these two will yield an incredible amount of knowledge.
“By 2030 we’re heading towards 100 trillion sensors,” Diamandis said. “We’re heading towards a world in which we’re going to be able to know anything we want, anywhere we want, anytime we want.” He added that tens of thousands of drones will hover over every major city.
Intelligence
“If you think there’s an arms race going on for AI, there’s also one for HI—human intelligence,” Diamandis said. He explained that if a genius was born in a remote village 100 years ago, he or she would likely not have been able to gain access to the resources needed to put his or her gifts to widely productive use. But that’s about to change.
Private companies as well as military programs are working on brain-machine interfaces, with the ultimate aim of uploading the human mind. The focus in the future will be on increasing intelligence of individuals as well as companies and even countries.
Wealth Concentration
A final crucial factor driving mass acceleration is the increase in wealth concentration. “We’re living in a time when there’s more wealth in the hands of private individuals, and they’re willing to take bigger risks than ever before,” Diamandis said. Billionaires like Mark Zuckerberg, Jeff Bezos, Elon Musk, and Bill Gates are putting millions of dollars towards philanthropic causes that will benefit not only themselves, but humanity at large.
What It All Means
One of the biggest implications of the rate at which the world is changing, Diamandis said, is that the cost of everything is trending towards zero. We are heading towards abundance, and the evidence lies in the reduction of extreme poverty we’ve already seen and will continue to see at an even more rapid rate.
Listening to Diamandis’ optimism, it’s hard not to find it contagious.

“The world is becoming better at an extraordinary rate,” he said, pointing out the rises in literacy, democracy, vaccinations, and life expectancy, and the concurrent decreases in child mortality, birth rate, and poverty.
“We’re alive during a pivotal time in human history,” he concluded. “There is nothing we don’t have access to.”
Stock Media provided by seanpavonephoto / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430283 A glimpse into the science of Humanoid ...

Interesting documentary about the existing science and future of humanoids and human-like robots, both in peace-time and military applications, as well as industrial use and various art forms – even new sports! Related Posts Mayfield Robotics Announces Kuri, a $700 … Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on A glimpse into the science of Humanoid ...