Tag Archives: inspiration

#437239 Using a quantum-like model to enable ...

Over the past few years, researchers have been trying to apply quantum physics theory to a variety of fields, including robotics, biology and cognitive science. Computational techniques that draw inspiration from quantum systems, also known as quantum-like (QL) models, could potentially achieve better performance and more sophisticated capabilities than more conventional approaches. Continue reading

Posted in Human Robots

#437232 A system for swarm robotics applications ...

Nature is one of the most valuable sources of inspiration for researchers developing new robots and computational techniques. Over the past few decades, technological advances have enabled the creation of increasingly sophisticated systems replicating naturally occurring processes and phenomena, such as animal behaviors and biological mechanisms. Continue reading

Posted in Human Robots

#436209 Video Friday: Robotic Endoscope Travels ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, WA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Kuka has just announced the results of its annual Innovation Award. From an initial batch of 30 applicants, five teams reached the finals (we were part of the judging committee). The five finalists worked for nearly a year on their applications, which they demonstrated this week at the Medica trade show in Düsseldorf, Germany. And the winner of the €20,000 prize is…Team RoboFORCE, led by the STORM Lab in the U.K., which developed a “robotic magnetic flexible endoscope for painless colorectal cancer screening, surveillance, and intervention.”

The system could improve colonoscopy procedures by reducing pain and discomfort as well as other risks such as bleeding and perforation, according to the STORM Lab researchers. It uses a magnetic field to control the endoscope, pulling rather than pushing it through the colon.

The other four finalists also presented some really interesting applications—you can see their videos below.

“Because we were so please with the high quality of the submissions, we will have next year’s finals again at the Medica fair, and the challenge will be named ‘Medical Robotics’,” says Rainer Bischoff, vice president for corporate research at Kuka. He adds that the selected teams will again use Kuka’s LBR Med robot arm, which is “already certified for integration into medical products and makes it particularly easy for startups to use a robot as the main component for a particular solution.”

Applications are now open for Kuka’s Innovation Award 2020. You can find more information on how to enter here. The deadline is 5 January 2020.

[ Kuka ]

Oh good, Aibo needs to be fed now.

You know what comes next, right?

[ Aibo ]

Your cat needs this robot.

It's about $200 on Kickstarter.

[ Kickstarter ]

Enjoy this tour of the Skydio offices courtesy Skydio 2, which runs into not even one single thing.

If any Skydio employees had important piles of papers on their desks, well, they don’t anymore.

[ Skydio ]

Artificial intelligence is everywhere nowadays, but what exactly does it mean? We asked a group MIT computer science grad students and post-docs how they personally define AI.

“When most people say AI, they actually mean machine learning, which is just pattern recognition.” Yup.

[ MIT ]

Using event-based cameras, this drone control system can track attitude at 1600 degrees per second (!).

[ UZH ]

Introduced at CES 2018, Walker is an intelligent humanoid service robot from UBTECH Robotics. Below are the latest features and technologies used during our latest round of development to make Walker even better.

[ Ubtech ]

Introducing the Alpha Prime by #VelodyneLidar, the most advanced lidar sensor on the market! Alpha Prime delivers an unrivaled combination of field-of-view, range, high-resolution, clarity and operational performance.

Performance looks good, but don’t expect it to be cheap.

[ Velodyne ]

Ghost Robotics’ Spirit 40 will start shipping to researchers in January of next year.

[ Ghost Robotics ]

Unitree is about to ship the first batch of their AlienGo quadrupeds as well:

[ Unitree ]

Mechanical engineering’s Sarah Bergbreiter discusses her work on micro robotics, how they draw inspiration from insects and animals, and how tiny robots can help humans in a variety of fields.

[ CMU ]

Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning.

[ Stanford ]

Since 2016, Verity's drones have completed more than 200,000 flights around the world. Completely autonomous, client-operated and designed for live events, Verity is making the magic real by turning drones into flying lights, characters, and props.

[ Verity ]

To monitor and stop the spread of wildfires, University of Michigan engineers developed UAVs that could find, map and report fires. One day UAVs like this could work with disaster response units, firefighters and other emergency teams to provide real-time accurate information to reduce damage and save lives. For their research, the University of Michigan graduate students won first place at a competition for using a swarm of UAVs to successfully map and report simulated wildfires.

[ University of Michigan ]

Here’s an important issue that I haven’t heard talked about all that much: How first responders should interact with self-driving cars.

“To put the car in manual mode, you must call Waymo.” Huh.

[ Waymo ]

Here’s what Gitai has been up to recently, from a Humanoids 2019 workshop talk.

[ Gitai ]

The latest CMU RI seminar comes from Girish Chowdhary at the University of Illinois at Urbana-Champaign on “Autonomous and Intelligent Robots in Unstructured Field Environments.”

What if a team of collaborative autonomous robots grew your food for you? In this talk, I will discuss some key advances in robotics, machine learning, and autonomy that will one day enable teams of small robots to grow food for you in your backyard in a fundamentally more sustainable way than modern mega-farms! Teams of small aerial and ground robots could be a potential solution to many of the serious problems that modern agriculture is facing. However, fully autonomous robots that operate without supervision for weeks, months, or entire growing season are not yet practical. I will discuss my group’s theoretical and practical work towards the underlying challenging problems in robotic systems, autonomy, sensing, and learning. I will begin with our lightweight, compact, and autonomous field robot TerraSentia and the recent successes of this type of undercanopy robots for high-throughput phenotyping with deep learning-based machine vision. I will also discuss how to make a team of autonomous robots learn to coordinate to weed large agricultural farms under partial observability. These direct applications will help me make the case for the type of reinforcement learning and adaptive control that are necessary to usher in the next generation of autonomous field robots that learn to solve complex problems in harsh, changing, and dynamic environments. I will then end with an overview of our new MURI, in which we are working towards developing AI and control that leverages neurodynamics inspired by the Octopus brain.

[ CMU RI ] Continue reading

Posted in Human Robots

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots

#435816 This Light-based Nervous System Helps ...

Last night, way past midnight, I stumbled onto my porch blindly grasping for my keys after a hellish day of international travel. Lights were low, I was half-asleep, yet my hand grabbed the keychain, found the lock, and opened the door.

If you’re rolling your eyes—yeah, it’s not exactly an epic feat for a human. Thanks to the intricate wiring between our brain and millions of sensors dotted on—and inside—our skin, we know exactly where our hand is in space and what it’s touching without needing visual confirmation. But this combined sense of the internal and the external is completely lost to robots, which generally rely on computer vision or surface mechanosensors to track their movements and their interaction with the outside world. It’s not always a winning strategy.

What if, instead, we could give robots an artificial nervous system?

This month, a team led by Dr. Rob Shepard at Cornell University did just that, with a seriously clever twist. Rather than mimicking the electric signals in our nervous system, his team turned to light. By embedding optical fibers inside a 3D printed stretchable material, the team engineered an “optical lace” that can detect changes in pressure less than a fraction of a pound, and pinpoint the location to a spot half the width of a tiny needle.

The invention isn’t just an artificial skin. Instead, the delicate fibers can be distributed both inside a robot and on its surface, giving it both a sense of tactile touch and—most importantly—an idea of its own body position in space. Optical lace isn’t a superficial coating of mechanical sensors; it’s an entire platform that may finally endow robots with nerve-like networks throughout the body.

Eventually, engineers hope to use this fleshy, washable material to coat the sharp, cold metal interior of current robots, transforming C-3PO more into the human-like hosts of Westworld. Robots with a “bodily” sense could act as better caretakers for the elderly, said Shepard, because they can assist fragile people without inadvertently bruising or otherwise harming them. The results were published in Science Robotics.

An Unconventional Marriage
The optical lace is especially creative because it marries two contrasting ideas: one biological-inspired, the other wholly alien.

The overarching idea for optical lace is based on the animal kingdom. Through sight, hearing, smell, taste, touch, and other senses, we’re able to interpret the outside world—something scientists call exteroception. Thanks to our nervous system, we perform these computations subconsciously, allowing us to constantly “perceive” what’s going on around us.

Our other perception is purely internal. Proprioception (sorry, it’s not called “inception” though it should be) is how we know where our body parts are in space without having to look at them, which lets us perform complex tasks when blind. Although less intuitive than exteroception, proprioception also relies on stretching and other deformations within the muscles and tendons and receptors under the skin, which generate electrical currents that shoot up into the brain for further interpretation.

In other words, in theory it’s possible to recreate both perceptions with a single information-carrying system.

Here’s where the alien factor comes in. Rather than using electrical properties, the team turned to light as their data carrier. They had good reason. “Compared with electricity, light carries information faster and with higher data densities,” the team explained. Light can also transmit in multiple directions simultaneously, and is less susceptible to electromagnetic interference. Although optical nervous systems don’t exist in the biological world, the team decided to improve on Mother Nature and give it a shot.

Optical Lace
The construction starts with engineering a “sheath” for the optical nerve fibers. The team first used an elastic polyurethane—a synthetic material used in foam cushioning, for example—to make a lattice structure filled with large pores, somewhat like a lattice pie crust. Thanks to rapid, high-resolution 3D printing, the scaffold can have different stiffness from top to bottom. To increase sensitivity to the outside world, the team made the top of the lattice soft and pliable, to better transfer force to mechanical sensors. In contrast, the “deeper” regions held their structure better, and kept their structure under pressure.

Now the fun part. The team next threaded stretchable “light guides” into the scaffold. These fibers transmit photons, and are illuminated with a blue LED light. One, the input light guide, ran horizontally across the soft top part of the scaffold. Others ran perpendicular to the input in a “U” shape, going from more surface regions to deeper ones. These are the output guides. The architecture loosely resembles the wiring in our skin and flesh.

Normally, the output guides are separated from the input by a small air gap. When pressed down, the input light fiber distorts slightly, and if the pressure is high enough, it contacts one of the output guides. This causes light from the input fiber to “leak” to the output one, so that it lights up—the stronger the pressure, the brighter the output.

“When the structure deforms, you have contact between the input line and the output lines, and the light jumps into these output loops in the structure, so you can tell where the contact is happening,” said study author Patricia Xu. “The intensity of this determines the intensity of the deformation itself.”

Double Perception
As a proof-of-concept for proprioception, the team made a cylindrical lace with one input and 12 output channels. They varied the stiffness of the scaffold along the cylinder, and by pressing down at different points, were able to calculate how much each part stretched and deformed—a prominent precursor to knowing where different regions of the structure are moving in space. It’s a very rudimentary sort of proprioception, but one that will become more sophisticated with increasing numbers of strategically-placed mechanosensors.

The test for exteroception was a whole lot stranger. Here, the team engineered another optical lace with 15 output channels and turned it into a squishy piano. When pressed down, an Arduino microcontroller translated light output signals into sound based on the position of each touch. The stronger the pressure, the louder the volume. While not a musical masterpiece, the demo proved their point: the optical lace faithfully reported the strength and location of each touch.

A More Efficient Robot
Although remarkably novel, the optical lace isn’t yet ready for prime time. One problem is scalability: because of light loss, the material is limited to a certain size. However, rather than coating an entire robot, it may help to add optical lace to body parts where perception is critical—for example, fingertips and hands.

The team sees plenty of potential to keep developing the artificial flesh. Depending on particular needs, both the light guides and scaffold can be modified for sensitivity, spatial resolution, and accuracy. Multiple optical fibers that measure for different aspects—pressure, pain, temperature—can potentially be embedded in the same region, giving robots a multitude of senses.

In this way, we hope to reduce the number of electronics and combine signals from multiple sensors without losing information, the authors said. By taking inspiration from biological networks, it may even be possible to use various inputs through an optical lace to control how the robot behaves, closing the loop from sensation to action.

Image Credit: Cornell Organic Robotics Lab. A flexible, porous lattice structure is threaded with stretchable optical fibers containing more than a dozen mechanosensors and attached to an LED light. When the lattice structure is pressed, the sensors pinpoint changes in the photon flow. Continue reading

Posted in Human Robots