Tag Archives: family

#437103 How to Make Sense of Uncertainty in a ...

As the internet churns with information about Covid-19, about the virus that causes the disease, and about what we’re supposed to do to fight it, it can be difficult to see the forest for the trees. What can we realistically expect for the rest of 2020? And how do we even know what’s realistic?

Today, humanity’s primary, ideal goal is to eliminate the virus, SARS-CoV-2, and Covid-19. Our second-choice goal is to control virus transmission. Either way, we have three big aims: to save lives, to return to public life, and to keep the economy functioning.

To hit our second-choice goal—and maybe even our primary goal—countries are pursuing five major public health strategies. Note that many of these advances cross-fertilize: for example, advances in virus testing and antibody testing will drive data-based prevention efforts.

Five major public health strategies are underway to bring Covid-19 under control and to contain the spread of SARS-CoV-2.
These strategies arise from things we can control based on the things that we know at any given moment. But what about the things we can’t control and don’t yet know?

The biology of the virus and how it interacts with our bodies is what it is, so we should seek to understand it as thoroughly as possible. How long any immunity gained from prior infection lasts—and indeed whether people develop meaningful immunity at all after infection—are open questions urgently in need of greater clarity. Similarly, right now it’s important to focus on understanding rather than making assumptions about environmental factors like seasonality.

But the biggest question on everyone’s lips is, “When?” When will we see therapeutic progress against Covid-19? And when will life get “back to normal”? There are lots of models out there on the internet; which of those models are right? The simple answer is “none of them.” That’s right—it’s almost certain that every model you’ve seen is wrong in at least one detail, if not all of them. But modeling is meant to be a tool for deeper thinking, a way to run mental (and computational) experiments before—and while—taking action. As George E. P. Box famously wrote in 1976, “All models are wrong, but some are useful.”

Here, we’re seeking useful insights, as opposed to exact predictions, which is why we’re pulling back from quantitative details to get at the mindsets that will support agency and hope. To that end, I’ve been putting together timelines that I believe will yield useful expectations for the next year or two—and asking how optimistic I need to be in order to believe a particular timeline.

For a moderately optimistic scenario to be relevant, breakthroughs in science and technology come at paces expected based on previous efforts and assumptions that turn out to be basically correct; accessibility of those breakthroughs increases at a reasonable pace; regulation achieves its desired effects, without major surprises; and compliance with regulations is reasonably high.

In contrast, if I’m being highly optimistic, breakthroughs in science and technology and their accessibility come more quickly than they ever have before; regulation is evidence-based and successful in the first try or two; and compliance with those regulations is high and uniform. If I’m feeling not-so-optimistic, then I anticipate serious setbacks to breakthroughs and accessibility (with the overturning of many important assumptions), repeated failure of regulations to achieve their desired outcomes, and low compliance with those regulations.

The following scenarios outline the things that need to happen in the fight against Covid-19, when I expect to see them, and how confident I feel in those expectations. They focus on North America and Europe because there are data missing about China’s 2019 outbreak and other regions are still early in their outbreaks. Perhaps the most important thing to keep in mind throughout: We know more today than we did yesterday, but we still have much to learn. New knowledge derived from greater study and debate will almost certainly inspire ongoing course corrections.

As you dive into the scenarios below, practice these three mindset shifts. First, defeating Covid-19 will be a marathon, not a sprint. We shouldn’t expect life to look like 2019 for the next year or two—if ever. As Ed Yong wrote recently in The Atlantic, “There won’t be an obvious moment when everything is under control and regular life can safely resume.” Second, remember that you have important things to do for at least a year. And third, we are all in this together. There is no “us” and “them.” We must all be alert, responsive, generous, and strong throughout 2020 and 2021—and willing to throw away our assumptions when scientific evidence invalidates them.

The Middle Way: Moderate Optimism
Let’s start with the case in which I have the most confidence: moderate optimism.

This timeline considers milestones through late 2021, the earliest that I believe vaccines will become available. The “normal” timeline for developing a vaccine for diseases like seasonal flu is 18 months, which leads to my projection that we could potentially have vaccines as soon as 18 months from the first quarter of 2020. While Melinda Gates agrees with that projection, others (including AI) believe that 3 to 5 years is far more realistic, based on past vaccine development and the need to test safety and efficacy in humans. However, repurposing existing vaccines against other diseases—or piggybacking off clever synthetic platforms—could lead to vaccines being available sooner. I tried to balance these considerations for this moderately optimistic scenario. Either way, deploying vaccines at the end of 2021 is probably much later than you may have been led to believe by the hype engine. Again, if you take away only one message from this article, remember that the fight against Covid-19 is a marathon, not a sprint.

Here, I’ve visualized a moderately optimistic scenario as a baseline. Think of these timelines as living guides, as opposed to exact predictions. There are still many unknowns. More or less optimistic views (see below) and new information could shift these timelines forward or back and change the details of the strategies.
Based on current data, I expect that the first wave of Covid-19 cases (where we are now) will continue to subside in many areas, leading governments to ease restrictions in an effort to get people back to work. We’re already seeing movement in that direction, with a variety of benchmarks and changes at state and country levels around the world. But depending on the details of the changes, easing restrictions will probably cause a second wave of sickness (see Germany and Singapore), which should lead governments to reimpose at least some restrictions.

In tandem, therapeutic efforts will be transitioning from emergency treatments to treatments that have been approved based on safety and efficacy data in clinical trials. In a moderately optimistic scenario, assuming clinical trials currently underway yield at least a few positive results, this shift to mostly approved therapies could happen as early as the third or fourth quarter of this year and continue from there. One approval that should come rather quickly is for plasma therapies, in which the blood from people who have recovered from Covid-19 is used as a source of antibodies for people who are currently sick.

Companies around the world are working on both viral and antibody testing, focusing on speed, accuracy, reliability, and wide accessibility. While these tests are currently being run in hospitals and research laboratories, at-home testing is a critical component of the mass testing we’ll need to keep viral spread in check. These are needed to minimize the impact of asymptomatic cases, test the assumption that infection yields resistance to subsequent infection (and whether it lasts), and construct potential immunity passports if this assumption holds. Testing is also needed for contact tracing efforts to prevent further spread and get people back to public life. Finally, it’s crucial to our fundamental understanding of the biology of SARS-CoV-2 and Covid-19.

We need tests that are very reliable, both in the clinic and at home. So, don’t go buying any at-home test kits just yet, even if you find them online. Wait for reliable test kits and deeper understanding of how a test result translates to everyday realities. If we’re moderately optimistic, in-clinic testing will rapidly expand this quarter and/or next, with the possibility of broadly available, high-quality at-home sampling (and perhaps even analysis) thereafter.

Note that testing is not likely to be a “one-and-done” endeavor, as a person’s infection and immunity status change over time. Expect to be testing yourself—and your family—often as we move later into 2020.

Testing data are also going to inform distancing requirements at the country and local levels. In this scenario, restrictions—at some level of stringency—could persist at least through the end of 2020, as most countries are way behind the curve on testing (Iceland is an informative exception). Governments will likely continue to ask citizens to work from home if at all possible; to wear masks or face coverings in public; to employ heightened hygiene and social distancing in workplaces; and to restrict travel and social gatherings. So while it’s likely we’ll be eating in local restaurants again in 2020 in this scenario, at least for a little while, it’s not likely we’ll be heading to big concerts any time soon.

The Extremes: High and Low Optimism
How would high and low levels of optimism change our moderately optimistic timeline? The milestones are the same, but the time required to achieve them is shorter or longer, respectively. Quantifying these shifts is less important than acknowledging and incorporating a range of possibilities into our view. It pays to pay attention to our bias. Here are a few examples of reasonable possibilities that could shift the moderately optimistic timeline.

When vaccines become available
Vaccine repurposing could shorten the time for vaccines to become available; today, many vaccine candidates are in various stages of testing. On the other hand, difficulties in manufacture and distribution, or faster-than-expected mutation of SARS-CoV-2, could slow vaccine development. Given what we know now, I am not strongly concerned about either of these possibilities—drug companies are rapidly expanding their capabilities, and viral mutation isn’t an urgent concern at this time based on sequencing data—but they could happen.

At first, governments will likely supply vaccines to essential workers such as healthcare workers, but it is essential that vaccines become widely available around the world as quickly and as safely as possible. Overall, I suggest a dose of skepticism when reading highly optimistic claims about a vaccine (or multiple vaccines) being available in 2020. Remember, a vaccine is a knockout punch, not a first line of defense for an outbreak.

When testing hits its stride
While I am confident that testing is a critical component of our response to Covid-19, reliability is incredibly important to testing for SARS-CoV-2 and for immunity to the disease, particularly at home. For an individual, a false negative (being told you don’t have antibodies when you really do) could be just as bad as a false positive (being told you do have antibodies when you really don’t). Those errors are compounded when governments are trying to make evidence-based policies for social and physical distancing.

If you’re highly optimistic, high-quality testing will ramp up quickly as companies and scientists innovate rapidly by cleverly combining multiple test modalities, digital signals, and cutting-edge tech like CRISPR. Pop-up testing labs could also take some pressure off hospitals and clinics.

If things don’t go well, reliability issues could hinder testing, manufacturing bottlenecks could limit availability, and both could hamstring efforts to control spread and ease restrictions. And if it turns out that immunity to Covid-19 isn’t working the way we assumed, then we must revisit our assumptions about our path(s) back to public life, as well as our vaccine-development strategies.

How quickly safe and effective treatments appear
Drug development is known to be long, costly, and fraught with failure. It’s not uncommon to see hope in a drug spike early only to be dashed later on down the road. With that in mind, the number of treatments currently under investigation is astonishing, as is the speed through which they’re proceeding through testing. Breakthroughs in a therapeutic area—for example in treating the seriously ill or in reducing viral spread after an infection takes hold—could motivate changes in the focus of distancing regulations.

While speed will save lives, we cannot overlook the importance of knowing a treatment’s efficacy (does it work against Covid-19?) and safety (does it make you sick in a different, or worse, way?). Repurposing drugs that have already been tested for other diseases is speeding innovation here, as is artificial intelligence.

Remarkable collaborations among governments and companies, large and small, are driving innovation in therapeutics and devices such as ventilators for treating the sick.

Whether government policies are effective and responsive
Those of us who have experienced lockdown are eager for it to be over. Businesses, economists, and governments are also eager to relieve the terrible pressure that is being exerted on the global economy. However, lifting restrictions will almost certainly lead to a resurgence in sickness.

Here, the future is hard to model because there are many, many factors at play, and at play differently in different places—including the extent to which individuals actually comply with regulations.

Reliable testing—both in the clinic and at home—is crucial to designing and implementing restrictions, monitoring their effectiveness, and updating them; delays in reliable testing could seriously hamper this design cycle. Lack of trust in governments and/or companies could also suppress uptake. That said, systems are already in place for contact tracing in East Asia. Other governments could learn important lessons, but must also earn—and keep—their citizens’ trust.

Expect to see restrictions descend and then lift in response to changes in the number of Covid-19 cases and in the effectiveness of our prevention strategies. Also expect country-specific and perhaps even area-specific responses that differ from each other. The benefit of this approach? Governments around the world are running perhaps hundreds of real-time experiments and design cycles in balancing health and the economy, and we can learn from the results.

A Way Out
As Jeremy Farrar, head of the Wellcome Trust, told Science magazine, “Science is the exit strategy.” Some of our greatest technological assistance is coming from artificial intelligence, digital tools for collaboration, and advances in biotechnology.

Our exit strategy also needs to include empathy and future visioning—because in the midst of this crisis, we are breaking ground for a new, post-Covid future.

What do we want that future to look like? How will the hard choices we make now about data ethics impact the future of surveillance? Will we continue to embrace inclusiveness and mass collaboration? Perhaps most importantly, will we lay the foundation for successfully confronting future challenges? Whether we’re thinking about the next pandemic (and there will be others) or the cascade of catastrophes that climate change is bringing ever closer—it’s important to remember that we all have the power to become agents of that change.

Special thanks to Ola Kowalewski and Jason Dorrier for significant conversations.

Image Credit: Drew Beamer / Unsplash Continue reading

Posted in Human Robots

#436466 How Two Robots Learned to Grill and ...

The list of things robots can do seems to be growing by the week. They can play sports, help us explore outer space and the deep sea, take over some of our boring everyday tasks, and even assemble Ikea furniture.

Now they can add one more accomplishment to the list: grilling and serving a hot dog.

It seems like a pretty straightforward task, and as far as grilling goes, hot dogs are about as easy as it gets (along with, maybe, burgers? Hot dogs require more rotation, but it’s easier to tell when they’re done since they’re lighter in color).

Let’s paint a picture: you’re manning the grill at your family’s annual Fourth of July celebration. You’ve got a 10-pack of plump, juicy beef franks and a hungry crowd of relatives whose food-to-alcohol ratio is getting pretty skewed—they need some solid calories, pronto. What are the steps you need to take to get those franks from package to plate?

Each one needs to be placed on the grill, rotated every couple minutes for even cooking, removed from the grill when you deem it’s done, then—if you’re the kind of guy or gal who goes the extra mile—placed in a bun and dressed with ketchup, mustard, pickles, and the like before being handed over to salivating, too-loud Uncle Hector or sweet, bored Cousin Margaret.

While carrying out your grillmaster duties, you know better than to drop the hot dogs on the ground, leave them cooking on one side for too long, squeeze them to the point of breaking or bursting, and any other hot-dog-ruining amateur moves.

But for a robot, that’s a lot to figure out, especially if they have no prior knowledge of grilling hot dogs (which, well, most robots don’t).

As described in a paper published in this week’s Science Robotics, a team from Boston University programmed two robotic arms to use reinforcement learning—a branch of machine learning in which software gathers information about its environment then learns from it by replaying its experiences and incorporating rewards—to cook and serve hot dogs.

The team used a set of formulas to specify and combine tasks (“pick up hot dog and place on the grill”), meet safety requirements (“always avoid collisions”), and incorporate general prior knowledge (“you cannot pick up another hot dog if you are already holding one”).

Baxter and Jaco—as the two robots were dubbed—were trained through computer simulations. The paper’s authors emphasized their use of what they call a “formal specification language” for training the software, with the aim of generating easily-interpretable task descriptions. In reinforcement learning, they explain, being able to understand how a reward function influences an AI’s learning process is a key component in understanding the system’s behavior—but most systems lack this quality, and are thus likely to be lumped into the ‘black box’ of AI.

The robots’ decisions throughout the hot dog prep process—when to turn a hot dog, when to take it off the grill, and so on—are, the authors write, “easily interpretable from the beginning because the language is very similar to plain English.”

Besides being a step towards more explainable AI systems, Baxter and Jaco are another example of fast-food robots—following in the footsteps of their burger and pizza counterparts—that may take over some repetitive manual tasks currently performed by human workers. As robots’ capabilities improve through incremental progress like this, they’ll be able to take on additional tasks.

In a not-so-distant future, then, you just may find yourself throwing back drinks with Uncle Hector and Cousin Margaret while your robotic replacement mans the grill, churning out hot dogs that are perfectly cooked every time.

Image Credit: Image by Muhammad Ribkhan from Pixabay Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436178 Within 10 Years, We’ll Travel by ...

What’s faster than autonomous vehicles and flying cars?

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX’s Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes.

But wait, it gets even better…

As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of “robotic avatars” will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.

Let’s dive in.

Hyperloop One: LA to SF in 35 Minutes
Did you know that Hyperloop was the brainchild of Elon Musk? Just one in a series of transportation innovations from a man determined to leave his mark on the industry.

In 2013, in an attempt to shorten the long commute between Los Angeles and San Francisco, the California state legislature proposed a $68 billion budget allocation for what appeared to be the slowest and most expensive bullet train in history.

Musk was outraged. The cost was too high, the train too sluggish. Teaming up with a group of engineers from Tesla and SpaceX, he published a 58-page concept paper for “The Hyperloop,” a high-speed transportation network that used magnetic levitation to propel passenger pods down vacuum tubes at speeds of up to 670 mph. If successful, it would zip you across California in 35 minutes—just enough time to watch your favorite sitcom.

In January 2013, venture capitalist Shervin Pishevar, with Musk’s blessing, started Hyperloop One with myself, Jim Messina (former White House Deputy Chief of Staff for President Obama), and tech entrepreneurs Joe Lonsdale and David Sacks as founding board members. A couple of years after that, the Virgin Group invested in this idea, Richard Branson was elected chairman, and Virgin Hyperloop One was born.

“The Hyperloop exists,” says Josh Giegel, co-founder and chief technology officer of Hyperloop One, “because of the rapid acceleration of power electronics, computational modeling, material sciences, and 3D printing.”

Thanks to these convergences, there are now ten major Hyperloop One projects—in various stages of development—spread across the globe. Chicago to DC in 35 minutes. Pune to Mumbai in 25 minutes. According to Giegel, “Hyperloop is targeting certification in 2023. By 2025, the company plans to have multiple projects under construction and running initial passenger testing.”

So think about this timetable: Autonomous car rollouts by 2020. Hyperloop certification and aerial ridesharing by 2023. By 2025—going on vacation might have a totally different meaning. Going to work most definitely will.

But what’s faster than Hyperloop?

Rocket Travel
As if autonomous vehicles, flying cars, and Hyperloop weren’t enough, in September of 2017, speaking at the International Astronautical Congress in Adelaide, Australia, Musk promised that for the price of an economy airline ticket, his rockets will fly you “anywhere on Earth in under an hour.”

Musk wants to use SpaceX’s megarocket, Starship, which was designed to take humans to Mars, for terrestrial passenger delivery. The Starship travels at 17,500 mph. It’s an order of magnitude faster than the supersonic jet Concorde.

Think about what this actually means: New York to Shanghai in 39 minutes. London to Dubai in 29 minutes. Hong Kong to Singapore in 22 minutes.

So how real is the Starship?

“We could probably demonstrate this [technology] in three years,” Musk explained, “but it’s going to take a while to get the safety right. It’s a high bar. Aviation is incredibly safe. You’re safer on an airplane than you are at home.”

That demonstration is proceeding as planned. In September 2017, Musk announced his intentions to retire his current rocket fleet, both the Falcon 9 and Falcon Heavy, and replace them with the Starships in the 2020s.

Less than a year later, LA mayor Eric Garcetti tweeted that SpaceX was planning to break ground on an 18-acre rocket production facility near the port of Los Angeles. And April of this year marked an even bigger milestone: the very first test flights of the rocket.

Thus, sometime in the next decade or so, “off to Europe for lunch” may become a standard part of our lexicon.

Avatars
Wait, wait, there’s one more thing.

While the technologies we’ve discussed will decimate the traditional transportation industry, there’s something on the horizon that will disrupt travel itself. What if, to get from A to B, you didn’t have to move your body? What if you could quote Captain Kirk and just say “Beam me up, Scotty”?

Well, shy of the Star Trek transporter, there’s the world of avatars.

An avatar is a second self, typically in one of two forms. The digital version has been around for a couple of decades. It emerged from the video game industry and was popularized by virtual world sites like Second Life and books-turned-blockbusters like Ready Player One.

A VR headset teleports your eyes and ears to another location, while a set of haptic sensors shifts your sense of touch. Suddenly, you’re inside an avatar inside a virtual world. As you move in the real world, your avatar moves in the virtual.

Use this technology to give a lecture and you can do it from the comfort of your living room, skipping the trip to the airport, the cross-country flight, and the ride to the conference center.

Robots are the second form of avatars. Imagine a humanoid robot that you can occupy at will. Maybe, in a city far from home, you’ve rented the bot by the minute—via a different kind of ridesharing company—or maybe you have spare robot avatars located around the country.

Either way, put on VR goggles and a haptic suit, and you can teleport your senses into that robot. This allows you to walk around, shake hands, and take action—all without leaving your home.

And like the rest of the tech we’ve been talking about, even this future isn’t far away.

In 2018, entrepreneur Dr. Harry Kloor recommended to All Nippon Airways (ANA), Japan’s largest airline, the design of an Avatar XPRIZE. ANA then funded this vision to the tune of $10 million to speed the development of robotic avatars. Why? Because ANA knows this is one of the technologies likely to disrupt their own airline industry, and they want to be ready.

ANA recently announced its “newme” robot that humans can use to virtually explore new places. The colorful robots have Roomba-like wheeled bases and cameras mounted around eye-level, which capture surroundings viewable through VR headsets.

If the robot was stationed in your parents’ home, you could cruise around the rooms and chat with your family at any time of day. After revealing the technology at Tokyo’s Combined Exhibition of Advanced Technologies in October, ANA plans to deploy 1,000 newme robots by 2020.

With virtual avatars like newme, geography, distance, and cost will no longer limit our travel choices. From attractions like the Eiffel Tower or the pyramids of Egypt to unreachable destinations like the moon or deep sea, we will be able to transcend our own physical limits, explore the world and outer space, and access nearly any experience imaginable.

Final Thoughts
Individual car ownership has enjoyed over a century of ascendancy and dominance.

The first real threat it faced—today’s ride-sharing model—only showed up in the last decade. But that ridesharing model won’t even get ten years to dominate. Already, it’s on the brink of autonomous car displacement, which is on the brink of flying car disruption, which is on the brink of Hyperloop and rockets-to-anywhere decimation. Plus, avatars.

The most important part: All of this change will happen over the next ten years. Welcome to a future of human presence where the only constant is rapid change.

Note: This article—an excerpt from my next book The Future Is Faster Than You Think, co-authored with Steven Kotler, to be released January 28th, 2020—originally appeared on my tech blog at diamandis.com. Read the original article here.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Virgin Hyperloop One Continue reading

Posted in Human Robots

#436100 Labrador Systems Developing Affordable ...

Developing robots for the home is still a challenge, especially if you want those robots to interact with people and help them do practical, useful things. However, the potential markets for home robots are huge, and one of the most compelling markets is for home robots that can assist humans who need them. Today, Labrador Systems, a startup based in California, is announcing a pre-seed funding round of $2 million (led by SOSV’s hardware accelerator HAX with participation from Amazon’s Alexa Fund and iRobot Ventures, among others) with the goal of expanding development and conducting pilot studies of “a new [assistive robot] platform for supporting home health.”

Labrador was founded two years ago by Mike Dooley and Nikolai Romanov. Both Mike and Nikolai have backgrounds in consumer robotics at Evolution Robotics and iRobot, but as an ’80s gamer, Mike’s bio (or at least the parts of his bio on LinkedIn) caught my attention: From 1995 to 1997, Mike worked at Brøderbund Software, helping to manage play testing for games like Myst and Riven and the Where in the World is Carmen San Diego series. He then spent three years at Lego as the product manager for MindStorms. After doing some marginally less interesting things, Mike was the VP of product development at Evolution Robotics from 2006 to 2012, where he led the team that developed the Mint floor sweeping robot. Evolution was acquired by iRobot in 2012, and Mike ended up as the VP of product development over there until 2017, when he co-founded Labrador.

I was pretty much sold at Where in the World is Carmen San Diego (the original version of which I played from a 5.25” floppy on my dad’s Apple IIe)*, but as you can see from all that other stuff, Mike knows what he’s doing in robotics as well.

And according to Labrador’s press release, what they’re doing is this:

Labrador Systems is an early stage technology company developing a new generation of assistive robots to help people live more independently. The company’s core focus is creating affordable solutions that address practical and physical needs at a fraction of the cost of commercial robots. … Labrador’s technology platform offers an affordable solution to improve the quality of care while promoting independence and successful aging.

Labrador’s personal robot, the company’s first offering, will enter pilot studies in 2020.

That’s about as light on detail as a press release gets, but there’s a bit more on Labrador’s website, including:

Our core focus is creating affordable solutions that address practical and physical needs. (we are not a social robot company)
By affordable, we mean products and technologies that will be available at less than 1/10th the cost of commercial robots.
We achieve those low costs by fusing the latest technologies coming out of augmented reality with robotics to move things in the real world.

The only hardware we’ve actually seen from Labrador at this point is a demo that they put together for Amazon’s re:MARS conference, which took place a few months ago, showing a “demonstration project” called Smart Walker:

This isn’t the home assistance robot that Labrador got its funding for, but rather a demonstration of some of their technology. So of course, the question is, what’s Labrador working on, then? It’s still a secret, but Mike Dooley was able to give us a few more details.

IEEE Spectrum: Your website shows a smart walker concept—how is that related to the assistive robot that you’re working on?

Mike Dooley: The smart walker was a request from a major senior living organization to have our robot (which is really good at navigation) guide residents from place to place within their communities. To test the idea with residents, it turned out to be much quicker to take the navigation system from the robot and put it on an existing rollator walker. So when you see the clips of the technology in the smart walker video on our website, that’s actually the robot’s navigation system localizing in real time and path planning in an environment.

“Assistive robot” can cover a huge range of designs and capabilities—can you give us any more detail about your robot, and what it’ll be able to do?

One of the core features of our robot is to help people move things where they have difficulty moving themselves, particularly in the home setting. That may sound trivial, but to someone who has impaired mobility, it can be a major daily challenge and negatively impact their life and health in a number of ways. Some examples we repeatedly hear are people not staying hydrated or taking their medication on time simply because there is a distance between where they are and the items they need. Once we have those base capabilities, i.e. the ability to navigate around a home and move things within it, then the robot becomes a platform for a wider variety of applications.

What made you decide to develop assistive robots, and why are robots a good solution for seniors who want to live independently?

Supporting independent living has been seen as a massive opportunity in robotics for some time, but also as something off in the future. The turning point for me was watching my mother enter that stage in her life and seeing her transition to using a cane, then a walker, and eventually to a wheelchair. That made the problems very real for me. It also made things much clearer about how we could start addressing specific needs with the tools that are becoming available now.

In terms of why robots can be a good solution, the basic answer is the level of need is so overwhelming that even helping with “basic” tasks can make an appreciable difference in the quality of someone’s daily life. It’s also very much about giving individuals a degree of control back over their environment. That applies to seniors as well as others whose world starts getting more complex to manage as their abilities become more impaired.

What are the particular challenges of developing assistive robots, and how are you addressing them? Why do you think there aren’t more robotics startups in this space?

The setting (operating in homes and personal spaces) and the core purpose of the product (aiding a wide variety of individuals) bring a lot of complexity to any capability you want to build into an assistive robot. Our approach is to put as much structure as we can into the system to make it functional, affordable, understandable and reliable.

I think one of the reasons you don’t see more startups in the space is that a lot of roboticists want to skip ahead and do the fancy stuff, such as taking on human-level capabilities around things like manipulation. Those are very interesting research topics, but we think those are also very far away from being practical solutions you can productize for people to use in their homes.

How do you think assistive robots and human caregivers should work together?

The ideal scenario is allowing caregivers to focus more of their time on the high-touch, personal side of care. The robot can offload the more basic support tasks as well as extend the impact of the caregiver for the long hours of the day they can’t be with someone at their home. We see that applying to both paid care providers as well as the 40 million unpaid family members and friends that provide assistance.

The robot is really there as a tool, both for individuals in need and the people that help them. What’s promising in the research discussions we’ve had so far, is that even when a caregiver is present, giving control back to the individual for simple things can mean a lot in the relationship between them and the caregiver.

What should we look forward to from Labrador in 2020?

Our big goal in 2020 is to start placing the next version of the robot with individuals with different types of needs to let them experience it naturally in their own homes and provide feedback on what they like, what don’t like and how we can make it better. We are currently reaching out to companies in the healthcare and home health fields to participate in those studies and test specific applications related to their services. We plan to share more detail about those studies and the robot itself as we get further into 2020.

If you’re an organization (or individual) who wants to possibly try out Labrador’s prototype, the company encourages you to connect with them through their website. And as we learn more about what Labrador is up to, we’ll have updates for you, presumably in 2020.

[ Labrador Systems ]

* I just lost an hour of my life after finding out that you can play Where in the World is Carmen San Diego in your browser for free. Continue reading

Posted in Human Robots