Tag Archives: europe

#428626 Cimcorp to fully automate Turkish Tire ...

Cimcorp Selected to Supply Turnkey Automated Handling System to Large Turkish Tire Manufacturer, Petlas
The leading tire handling specialist’s system will handle tires in the tire-finishing and palletizing areas in Turkish manufacturer’s expanded facility
Ulvila, Finland – November 9, 2016 – Cimcorp, leading global supplier of turnkey automation for intralogistics and tire-handling solutions, announces it has been selected to implement a fully automated handling system in Petlas Tire Corporation’s (Petlas) factory in Kirsehir, Turkey. Based on Cimcorp’s Dream Factory solution, the automation will take care of the handling of passenger car radial (PCR) finished tires in the tire-finishing and palletizing areas. Work on the order is already underway and the’ turnkey material handling system will become fully operational in fall 2017.
The order, Cimcorp’s first project for Petlas, is part of a huge investment program to expand the Kirsehir plant in order to increase Petlas’ PCR production capacity and meet growing demand.
Turkey achieved record car production and export levels in 2015, with production up by 16 percent and exports up 12 percent over the preceding year. This growth rate is higher than in any other European country and, with its automotive plants rolling out 1.36 million vehicles in 2015, Turkey is now the seventh largest automotive producer in Europe.
With the production equipment – the tire-building machines, presses and testing machines – already installed, Petlas is commencing the automation of the plant’s material handling. This comprises Cimcorp’s robotic buffer stores, tire conveyors and control software – Cimcorp WCS (Warehouse Control Software) – to take care of all material flows. Using linear robots operating on overhead gantries, the system will automate the handling and transfer of finished tires from the trimming stations, through visual inspection and uniformity testing, to palletizing.
Yahya Ertem, general manager, Petlas Tire Corporation, said, “We think highly of Cimcorp’s software, which integrates the machines into one entity and keeps the flow of material and data under complete control. Cimcorp’s Dream Factory solution fits with our vision to achieve ‘excellence in business’ and will help us to achieve our strategic goals.”
Tero Peltomäki, vice president of sales and projects, Cimcorp, said, “It has been fantastic to work with the Petlas team, honing our design into the best possible solution for the Kirsehir plant. The automation will help Petlas to enhance its market position as a leading tire manufacturer and distributor and we look forward to working on future automation projects with the company.”
To receive high-resolution images, please send requests to Heidi Scott via email at: lasendio@dprgroup.com

About Cimcorp
Cimcorp Group – part of Murata Machinery, Ltd. (Muratec) – is a leading global supplier of turnkey automation for intralogistics, using advanced robotics and software technologies. As well as being a manufacturer and integrator of pioneering material handling systems for the tire industry, Cimcorp has developed unique robotic solutions for order fulfillment and storage that are being used in the food & beverage, retail, e-commerce, FMCG and postal services sectors. With locations in Finland, Canada and the United States, the group has around 300 employees and has delivered over 2,000 logistics automation solutions. Designed to reduce operating costs, ensure traceability and improve efficiency, these systems are used within manufacturing and distribution centers in 40 countries across five continents. For more information, visit www.cimcorp.com.
About Petlas Tire Corporation (Petlas)
Founded in 1976, Petlas Tire Corporation has operations in 98 countries worldwide and employs 2,150 people. The company’s plant in Kirsehir currently has the capacity to produce 8 million PCR (passenger car radial) tires, 2 million agricultural tires, 500,000 TBR (truck & bus radial) tires and 300,000 OTR (off-the-road) tires per year. For more information, visit www.petlas.com.

The post Cimcorp to fully automate Turkish Tire Manufacturer Petlas appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#428367 Fusion for Energy signs multi-million ...

Fusion for Energy signs multi-million deal with Airbus Safran Launchers, Nuvia Limited and Cegelec CEM to develop robotics equipment for ITER
The contract for a value of nearly 100 million EUR is considered to be the single biggest robotics deal to date in the field of fusion energy. The state of the art equipment will form part of ITER, the world’s largest experimental fusion facility and the first in history to produce 500 MW. The prestigious project brings together seven parties (China, Europe, Japan, India, the Republic of Korea, the Russian Federation and the USA) which represent 50% of the world’s population and 80% of the global GDP.
The collaboration between Fusion for Energy (F4E), the EU organisation managing Europe’s contribution to ITER, with a consortium of companies consisting of Airbus Safran Launchers (France-Germany), Nuvia Limited (UK) and Cegelec CEM (France), companies of the VINCI Group, will run for a period of seven years. The UK Atomic Energy Authority (UK), Instituto Superior Tecnico (Portugal), AVT Europe NV (Belgium) and Millennium (France) will also be part of this deal which will deliver remotely operated systems for the transportation and confinement of components located in the ITER vacuum vessel.
The contract carries also a symbolic importance marking the signature all procurement packages managed by Europe in the field of remote handling. Carlo Damiani, F4E’s Project Manager for ITER Remote Handling Systems, explained that “F4E’s stake in ITER offers an unparalleled opportunity to companies and laboratories to develop expertise and an industrial culture in fusion reactors’ maintenance.”
Cut-away image of the ITER machine showing the casks at the three levels of the ITER machine. ITER IO © (Remote1 web). Photo Credit: f4e.europa.euIllustration of lorry next to an ITER cask. F4E © (Remote 2 web). Photo Credit: f4e.europa.euAerial view of the ITER construction site, October 2016. F4E © (ITER site aerial Oct). Photo Credit: f4e.europa.eu

Why ITER requires Remote Handling?
Remote handling refers to the high-tech systems that will help us maintain and repair the ITER machine. The space where the bulky equipment will operate is limited and the exposure of some of the components to radioactivity, prohibit any manual intervention inside the vacuum vessel.

What will be delivered through this contract?
The transfer of components from the ITER vacuum vessel to the Hot Cell building, where they will be deposited for maintenance, will need to be carried out with the help of massive double-door containers known as casks. According to current estimates, 15 of these casks will need to be manufactured and in their largest configuration they will measure 8.5 m x 3.7 m x 2.6 m approaching 100 tonnes when transporting the heaviest components. These enormous “boxes”, resembling to a conventional lorry container, will be remotely operated as they move between the different levels and buildings of the machine. Apart from the transportation and confinement of components, the ITER Cask and Plug Remote Handling System will also ensure the installation of the remote handling equipment entering into the vacuum vessel to pick up the components to be removed. The technologies underpinning this system will encompass a variety of high-tech skills and comply with nuclear safety requirements. A proven manufacturing experience in similar fields and the development of bespoke systems to perform mechanical transfers will be essential.

Background information
MEMO: Fusion for Energy signs multi-million deal with Airbus Safran Launchers, Nuvia Limited and Cegelec CEM to develop robotics equipment for ITER
Multimedia
To see how the ITER Remote Handling System will operate click on clip 1 and clip 2
To see the progress of the ITER construction site click here
To take a virtual tour on the ITER construction site click here

Image captions
Cut-away image of the ITER machine showing the casks at the three levels of the ITER machine. ITER IO © (Remote1 web)

Illustration of lorry next to an ITER cask. F4E © (Remote 2 web)

Aerial view of the ITER construction site, October 2016. F4E © (ITER site aerial Oct)

The consortium of companies
The consortium combines the space expertise of Airbus Safran Launchers, adapted to this extreme environment to ensure safe conditions for the ITER teams; with Nuvia comes a wealth of nuclear experience dating back to the beginnings of the UK Nuclear industry. Nuvia has delivered solutions to some of the world’s most complex nuclear challenges; and with Cegelec CEM as a specialist in mechanical projects for French nuclear sector, which contributes over 30 years in the nuclear arena, including turnkey projects for large scientific installations, as well as the realisation of complex mechanical systems.

Fusion for Energy
Fusion for Energy (F4E) is the European Union’s organisation for Europe’s contribution to ITER.
One of the main tasks of F4E is to work together with European industry, SMEs and research organisations to develop and provide a wide range of high technology components together with engineering, maintenance and support services for the ITER project.
F4E supports fusion R&D initiatives through the Broader Approach Agreement signed with Japan and prepares for the construction of demonstration fusion reactors (DEMO).
F4E was created by a decision of the Council of the European Union as an independent legal entity and was established in April 2007 for a period of 35 years.
Its offices are in Barcelona, Spain.
http://www.fusionforenergy.europa.eu
http://www.youtube.com/user/fusionforenergy
http://twitter.com/fusionforenergy
http://www.flickr.com/photos/fusionforenergy

ITER
ITER is a first-of-a-kind global collaboration. It will be the world’s largest experimental fusion facility and is designed to demonstrate the scientific and technological feasibility of fusion power. It is expected to produce a significant amount of fusion power (500 MW) for about seven minutes. Fusion is the process which powers the sun and the stars. When light atomic nuclei fuse together form heavier ones, a large amount of energy is released. Fusion research is aimed at developing a safe, limitless and environmentally responsible energy source.
Europe will contribute almost half of the costs of its construction, while the other six parties to this joint international venture (China, Japan, India, the Republic of Korea, the Russian Federation and the USA), will contribute equally to the rest.
The site of the ITER project is in Cadarache, in the South of France.
http://www.iter.org

For Fusion for Energy media enquiries contact:
Aris Apollonatos
E-mail: aris.apollonatos@f4e.europa.eu
Tel: + 34 93 3201833 + 34 649 179 42
The post Fusion for Energy signs multi-million deal to develop robotics equipment for ITER appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#428357 UV Disinfection robot

Tech-Link Healthcare Systems partners with Blue Ocean Robotics Introducing UV-Disinfection Robot
Singapore, 1 November 2016 – The rise of robots have steered Tech-Link Healthcare Systems, a design and integrator of healthcare automation systems to offer solutions beyond automated storage and material handling systems. With a vision of providing holistic solutions for healthcare organisations, Tech-Link extends its capabilities by offering UV disinfection robot solutions via a strategic partnership with Danish robotics company, Blue Ocean Robotics to battle against Hospital Acquired Infections (HAIs).Singapore’s labour intensive healthcare environment and the unknown impact of HAIs in the developed city-state had beckoned Tech-Link Healthcare Systems to offer solutions in the area of disinfection. We recognised the rise in demand for robots to collaborate with humans and have identified this need for customers. Introducing robotic technologies as part of our suite of solutions is the company’s mission to innovate the way healthcare organisations work and enhance their customers’ experience.Tech-Link’s partnership with Blue Ocean Robotics affirms both companies’ efforts in reaching out to new markets with technology and solutions to ease manpower crunch, deliver greater value and improve the quality of healthcare services. As an official sales partner, we bring together Blue Ocean Robotics’ expertise in automating disinfection procedures to promote safer, efficient and more productive work environment.
“Tech-Link looks forward to developing reliable healthcare solutions with hardware and latest technologies from Blue Ocean Robotics for our customers in Singapore and abroad.” said Director of Tech-Link Healthcare Systems, Tan Hock Seng. “Our similar beliefs in the Blue Ocean strategy synergise the collaboration to improve the quality of healthcare services through robotics.” he added.“We are very excited about our new sales partner Tech-Link Healthcare Systems, since it is of great importance for Blue Ocean Robotics to expand our sales of new technologies beyond Denmark’s borders. Blue Ocean Robotics focuses on creating new markets for robots. This includes both the development of new technologies and the creation of new markets for revolutionary robot solutions. We welcome Tech-Link Healthcare Systems with open arms and look forward to a fruitful collaboration in the years ahead.” said Claus Risager, Rune K. Larsen & John Erland Østergaard, Partners and Co-CEOs, Blue Ocean Robotics.
UV-Disinfection RobotThe UV-Disinfection Robot – also called UV-DR – is an autonomous disinfection robot for hospitals, production lines and pharmaceutical companies. The robot is used primarily in, but not limited to the cleaning cycle with the aim of reducing spread of HAIs, infectious diseases, viruses, bacteria and other types or harmful organic materials.UV-DR is a mobile robot that can drive autonomously while emitting concentrated UV-C light onto pre-defined infectious hotspots in patient rooms and other hospital environments, thus disinfecting and killing bacteria and virus on all exposed surfaces. An exposure time of ten minutes is estimated to kill up to 99% of bacteria such as Clostridium Difficile.

About Tech-Link Healthcare Systems Pte LtdTech-Link Healthcare Systems is a subsidiary of Tech-Link Storage Engineering established in Singapore since 2015. The company designs and provides innovative solutions for the healthcare sector, focusing on advanced and emerging solutions to support healthcare organisations in optimising available resources and services. Tech-Link Healthcare Systems design and implement automated material handling systems to enhance secured material transport and logistics storage management in hospitals and other healthcare facilities. As a complete solution provider, the company also provides consultancy in systems design to streamline and automate processes as well as integrated video solutions within healthcare facilities.About Tech-Link Storage Engineering Pte LtdTech-Link Storage Engineering is a group of companies established in Singapore with more than 25 years of principal activities in procurement, manufacturing and marketing of storage, distribution and materials handling products and systems. From its domain expertise in storage and racking systems, Tech-Link is also involved in R&D, system design, supply and implementation of logistics supply chain automation systems. The business expanded its global capabilities in the area of planning and consultancy to provide solutions for Built-to-Suit industrial developments and Healthcare logistics systems.
Tech-Link is an ISO 9001:2008 and OHSAS 18001:2007 certified company for Quality Management System and Occupational, Health and Safety System.Visit www.techlinkstorageengineering.comAbout Blue Ocean RoboticsBlue Ocean Robotics is an international company group with presence across the globe including America, Europe, Asia and Australia. The robotics company has its headquarter in the city of Odense (www.odenserobotics.dk) in Denmark. Blue Ocean Robotics applies robot technology to create solutions and innovation for end-users and new businesses in partnerships.Visit www.blue-ocean-robotics.com
Here is a video showing the robot in action:

The post UV Disinfection robot appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#428173 Next-Gen Robotics & Automation: ...

PRESS RELEASE:

The fall in price of next-generation robots from hundreds to tens of thousands of pounds means that the business case just became stronger for automotive vehicle and parts manufacturers to implement robotic solutions across individual manufacturing lines.

Challenges and pitfalls remain though, with nearly 76% of the target audience lacking clarity on robotic capabilities and implementation best practice. From how to prepare process for automation, to the individual capabilities of each type of robot for individual production lines, OEMs need to know the next best step.

This year’s must attend Next-Generation Robotics & Automation: Automotive Manufacturing Europe 2016 Summit will be the only event focused on robotic upgrade and innovation, specifically for the automotive industry.

Co-located with our UK flagship Joining, Forming & Manufacturing Technologies Summit, on 29th-30th November, at the VOX in Birmingham, this must attend event addresses how to retain cutting edge in automotive manufacturing and the tactics needed to get next-generation robots right, first time.

Reasons To Attend:

The Only European Robotics Event Dedicated To The Automotive Industry

Discuss selection and implementation challenges specific to your sector:

8+ Robotic Capabilities Case Studies – Comprehensive access to exclusive manufacturer perspectives on Next-Generation Robotic applications – direct from the plant

5 Process Specific Breakout Groups – Grapple with application, maintenance & selection considerations particular to your production process: Body Shop, Paint Shop, Power Train & Final Assembly

4 Robot-Type Deep Dive Discussion Groups – Discuss with peers the capabilities and attributes of each specific next-generation robot type to address their relevance to your needs: Zero Speed Monitoring, Power & Force Limited, Speed & Separation & Hand Guided Robots

Strategic & Technical Focus – A blended programme offers access to business case and strategic considerations, as well as tactical robotic application techniques
Speakers Include:

Willem Grobler, Technology Project Leader, BMW
Rich McDonnell, Senior Manufacturing Manager TS-22,
Jaguar XE & F-Pace Body Construction, Jaguar Land Rover
Dan Lämkull , Methods Developer, Volvo Car Corporation
Ali Ackay, Control Technologies & Robotics – Manufacturing Engineering Development, Daimler AG & Mercedes-Benz Trucks

Register today to profit from the Super Early Bird Discount, and reserve your place at the innovation hub of the European Automotive sector in time!
The post Next-Gen Robotics & Automation: Automotive Manufacturing Europe 2016 appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#426443 World Medical Robotics and Computer – ...

World Medical Robotics and Computer – Assisted Surgery Market Is Expected to Reach $20.5 Billion by 2022 – Allied Market Research
A new report published by Allied Market Research titled, World Medical Robotics and Computer-Assisted Surgery Market – Opportunities and Forecasts, 2015 -2022, projects that the world medical robotics and computer-assisted surgery market would reach $20.5 billion by 2022. The surgical robotics segment was the highest revenue-generating segment, accounting for nearly half of the market share in 2015, and is expected to maintain its dominance throughout the forecast period.
The major factors boosting the market growth include a shifting trend from conventional surgery to advanced robotic surgery, growing adoption of robotics prosthetic & exoskeleton for rehabilitation therapeutics, and rising incidence of cancers and other critical disorders. In addition, rising emphasis on hospital & pharmacy automation and presence of high unmet medical needs in developing and underdeveloped economies are anticipated to drive the demand for medical robotics and computer-assisted surgical systems. Moreover, in order to minimize human errors during drug handling & medicine dispensing and reduce hospital maintenance cost & faculty time, large-scale hospitals and pharmacies are now adopting automated or robotic solutions. However, the high cost associated with such medical robotics and robotic surgical procedures is the major factor restraining the market growth.
The rehabilitation robotics and hospital & pharmacy robotics segments collectively accounted for around one-third of the market share in 2015, and is projected to maintain dominance throughout the forecast period. The growth of this market was majorly attributed to the shifting trend from wheelchair to robotic rehabilitation therapy, growing focus on hospital infrastructure improvisation, and increasing healthcare expenditure. Likewise, the use of hospital and pharmacy robotics have led to cost-cutting in hospital expenditure and reduction in cases of hospital-acquired infection, which further supplements the adoption of hospital and pharmacy automation robots.

Key Findings:
The rehabilitation robotics market is projected to register the highest CAGR of 20.8% during forecast period.
In surgical robotics, the accessories segment is expected to maintain its market foothold.
In 2015, prosthetics was the highest revenue-generating segment, whereas exoskeleton is projected to be the fastest growing segment in the rehabilitation robotics market during the forecast period.
The medication-dispensing robotics segment generated the highest revenue, which accounted for over half of the hospital and pharmacy robotics market share in 2015.
In 2015, gynecology and urology surgery segments collectively accounted for about half of the surgical robotics market.
Asia-Pacific is likely to be the fastest growing market, growing at a CAGR of 16.5% from 2015 to 2022.
In 2015, North America and Europe collectively accounted for around three-fourths of the world medical robotics and computer-assisted surgery market revenue.
North America is anticipated to remain the highest revenue-generating region, owing to widespread adoption of surgical robotics along with the non-invasive robotic radiosurgical solutions. The growth of medical robotics and computer assisted surgery market in Europe is primarily characterized by the increase in geriatric & amputee population, high incidence of chronic diseases, and growing investment on hospital infrastructure. Moreover, the Asia-Pacific region is expected to grow rapidly because of the increasing healthcare expenditure, growing awareness of advanced robotic solutions for several health conditions, and increase in disposable income.
The key companies profiled include Intuitive Surgical, Inc., Blue Belt Technologies Ltd., Think Surgical, Inc., Hansen Medical, Inc., MAKO Surgical Corp., Renishaw plc., Stanmore Implants Worldwide, Ltd., Mazor Robotics Ltd., ReWalk Robotics, Smith & Nephew, Ekso Bionics, Hocoma AG, Titan Medical Inc., and Hitachi Medical Systems.
The post World Medical Robotics and Computer – Assisted Surgery Market appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment