Tag Archives: death

#435462 Where Death Ends and Cyborgs Begin, With ...

Transhumanism is a growing movement but also one of the most controversial. Though there are many varying offshoots within the movement, the general core idea is the same: evolve and enhance human beings by integrating biology with technology.

We recently sat down with one of the most influential and vocal transhumanists, author and futurist Zoltan Istvan, on the latest episode of Singularity University Radio’s podcast series: The Feedback Loop, to discuss his ideas on technological implants, religion, transhumanism, and death.

Although Zoltan’s origin story is rooted deeply in his time as a reporter for National Geographic, much of his rise to prominence has been a result of his contributions to a variety of media outlets, including an appearance on the Joe Rogan podcast. Additionally, many of you may know him from his novel, The Transhumanist Wager, and his 2016 presidential campaign, where he drove around the United States in a bus that had been remodeled into the shape of a coffin.

Although Zoltan had no illusions about actually winning the presidency, he had hoped that the “immortality bus” and his campaign might help inject more science, technology, and longevity research into the political discourse, or at the very least spark a more serious conversation around the future of our species.

Only time will tell if his efforts paid off, but in the meantime, you can hear Zoltan discuss religion, transhumanism, implants, the existential motivation of death, and the need for new governmental policies in Episode 7 of The Feedback Loop. To listen in each week you can find us on your favorite podcasting platforms, such as Spotify, Apple, or Google, and you can find links to other podcasting platforms and Singularity Hub’s text-to-speech articles here. You can also find our past episodes with other thought leaders like Douglas Rushkoff and Annaka Harris below.

Image Credit: VAlex / Shutterstock.com Continue reading

Posted in Human Robots

#435436 Undeclared Wars in Cyberspace Are ...

The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.

Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.

This is cyberwarfare.

The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).

At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.

For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.

“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”

The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.

The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.

US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.

However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.

“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”

The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.

Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².

UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.

“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.

However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”

Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.

Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”

White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”

The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.

“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.

But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.

“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”

In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.

Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.

Image Credit: pinkeyes / Shutterstock.com Continue reading

Posted in Human Robots

#435119 Are These Robots Better Than You at ...

Robot technology is evolving at breakneck speed. SoftBank’s Pepper is found in companies across the globe and is rapidly improving its conversation skills. Telepresence robots open up new opportunities for remote working, while Boston Dynamics’ Handle robot could soon (literally) take a load off human colleagues in warehouses.

But warehouses and offices aren’t the only places where robots are lining up next to humans.

Toyota’s Cue 3 robot recently showed off its basketball skills, putting up better numbers than the NBA’s most accurate three-point shooter, the Golden State Warriors’ Steph Curry.

Cue 3 is still some way from being ready to take on Curry, or even amateur basketball players, in a real game. However, it is the latest member of a growing cast of robots challenging human dominance in sports.

As these robots continue to develop, they not only exemplify the speed of exponential technology development, but also how those technologies are improving human capabilities.

Meet the Contestants
The list of robots in sports is surprisingly long and diverse. There are robot skiers, tumblers, soccer players, sumos, and even robot game jockeys. Introductions to a few of them are in order.

Robot: Forpheus
Sport: Table tennis
Intro: Looks like something out of War of the Worlds equipped with a ping pong bat instead of a death ray.
Ability level: Capable of counteracting spin shots and good enough to beat many beginners.

Robot: Sumo bot
Sport: Sumo wrestling
Intro: Hyper-fast, hyper-aggressive. Think robot equivalent to an angry wasp on six cans of Red Bull crossed with a very small tank.
Ability level: Flies around the ring way faster than any human sumo. Tend to drive straight out of the ring at times.

Robot: Cue 3
Sport: Basketball
Intro: Stands at an imposing 6 foot and 10 inches, so pretty much built for the NBA. Looks a bit like something that belongs in a video game.
Ability level: A 62.5 percent three-pointer percentage, which is better than Steph Curry’s; is less mobile than Charles Barkley – in his current form.

Robot: Robo Cup Robots
Intro: The future of soccer. If everything goes to plan, a team of robots will take on the Lionel Messis and Cristiano Ronaldos of 2050 and beat them in a full 11 vs. 11 game.
Ability level: Currently plays soccer more like the six-year-olds I used to coach than Lionel Messi.

The Limiting Factor
The skill level of all the robots above is impressive, and they are doing things that no human contestant can. The sumo bots’ inhuman speed is self-evident. Forpheus’ ability to track the ball with two cameras while simultaneously tracking its opponent with two other cameras requires a look at the spec sheet, but is similarly beyond human capability. While Cue 3 can’t move, it makes shots from the mid-court logo look easy.

Robots are performing at a level that was confined to the realm of science fiction at the start of the millennium. The speed of development indicates that in the near future, my national team soccer coach would likely call up a robot instead of me (he must have lost my number since he hasn’t done so yet. It’s the only logical explanation), and he’d be right to do so.

It is also worth considering that many current sports robots have a humanoid form, which limits their ability. If engineers were to optimize robot design to outperform humans in specific categories, many world champions would likely already be metallic.

Swimming is perhaps one of the most obvious. Even Michael Phelps would struggle to keep up with a torpedo-shaped robot, and if you beefed up a sumo robot to human size, human sumos might impress you by running away from them with a 100-meter speed close to Usain Bolt’s.

In other areas, the playing field for humans and robots is rapidly leveling. One likely candidate for the first head-to-head competitions is racing, where self-driving cars from the Roborace League could perhaps soon be ready to race the likes of Lewis Hamilton.

Tech Pushing Humans
Perhaps one of the biggest reasons why it may still take some time for robots to surpass us is that they, along with other exponential technologies, are already making us better at sports.

In Japan, elite volleyball players use a robot to practice their attacks. Some American football players also practice against robot opponents and hone their skills using VR.

On the sidelines, AI is being used to analyze and improve athletes’ performance, and we may soon see the first AI coaches, not to mention referees.

We may even compete in games dreamt up by our electronic cousins. SpeedGate, a new game created by an AI by studying 400 different sports, is a prime example of that quickly becoming a possibility.

However, we will likely still need to make the final call on what constitutes a good game. The AI that created SpeedGate reportedly also suggested less suitable pastimes, like underwater parkour and a game that featured exploding frisbees. Both of these could be fun…but only if you’re as sturdy as a robot.

Image Credit: RoboCup Standard Platform League 2018, ©The Robocup Federation. Published with permission of reproduction granted by the RoboCup Federation. Continue reading

Posted in Human Robots

#435080 12 Ways Big Tech Can Take Big Action on ...

Bill Gates and Mark Zuckerberg have invested $1 billion in Breakthrough Energy to fund next-generation solutions to tackle climate. But there is a huge risk that any successful innovation will only reach the market as the world approaches 2030 at the earliest.

We now know that reducing the risk of dangerous climate change means halving global greenhouse gas emissions by that date—in just 11 years. Perhaps Gates, Zuckerberg, and all the tech giants should invest equally in innovations to do with how their own platforms —search, social media, eCommerce—can support societal behavior changes to drive down emissions.

After all, the tech giants influence the decisions of four billion consumers every day. It is time for a social contract between tech and society.

Recently myself and collaborator Johan Falk published a report during the World Economic Forum in Davos outlining 12 ways the tech sector can contribute to supporting societal goals to stabilize Earth’s climate.

Become genuine climate guardians

Tech giants go to great lengths to show how serious they are about reducing their emissions. But I smell cognitive dissonance. Google and Microsoft are working in partnership with oil companies to develop AI tools to help maximize oil recovery. This is not the behavior of companies working flat-out to stabilize Earth’s climate. Indeed, few major tech firms have visions that indicate a stable and resilient planet might be a good goal, yet AI alone has the potential to slash greenhouse gas emissions by four percent by 2030—equivalent to the emissions of Australia, Canada, and Japan combined.

We are now developing a playbook, which we plan to publish later this year at the UN climate summit, about making it as simple as possible for a CEO to become a climate guardian.

Hey Alexa, do you care about the stability of Earth’s climate?

Increasingly, consumers are delegating their decisions to narrow artificial intelligence like Alexa and Siri. Welcome to a world of zero-click purchases.

Should algorithms and information architecture be designed to nudge consumer behavior towards low-carbon choices, for example by making these options the default? We think so. People don’t mind being nudged; in fact, they welcome efforts to make their lives better. For instance, if I want to lose weight, I know I will need all the help I can get. Let’s ‘nudge for good’ and experiment with supporting societal goals.

Use social media for good

Facebook’s goal is to bring the world closer together. With 2.2 billion users on the platform, CEO Mark Zuckerberg can reasonably claim this goal is possible. But social media has changed the flow of information in the world, creating a lucrative industry around a toxic brown-cloud of confusion and anger, with frankly terrifying implications for democracy. This has been linked to the rise of nationalism and populism, and to the election of leaders who shun international cooperation, dismiss scientific knowledge, and reverse climate action at a moment when we need it more than ever.

Social media tools need re-engineering to help people make sense of the world, support democratic processes, and build communities around societal goals. Make this your mission.

Design for a future on Earth

Almost everything is designed with computer software, from buildings to mobile phones to consumer packaging. It is time to make zero-carbon design the new default and design products for sharing, re-use and disassembly.

The future is circular

Halving emissions in a decade will require all companies to adopt circular business models to reduce material use. Some tech companies are leading the charge. Apple has committed to becoming 100 percent circular as soon as possible. Great.

While big tech companies strive to be market leaders here, many other companies lack essential knowledge. Tech companies can support rapid adoption in different economic sectors, not least because they have the know-how to scale innovations exponentially. It makes business sense. If economies of scale drive the price of recycled steel and aluminium down, everyone wins.

Reward low-carbon consumption

eCommerce platforms can create incentives for low-carbon consumption. The world’s largest experiment in greening consumer behavior is Ant Forest, set up by Chinese fintech giant Ant Financial.

An estimated 300 million customers—similar to the population of the United States—gain points for making low-carbon choices such as walking to work, using public transport, or paying bills online. Virtual points are eventually converted into real trees. Sure, big questions remain about its true influence on emissions, but this is a space for rapid experimentation for big impact.

Make information more useful

Science is our tool for defining reality. Scientific consensus is how we attain reliable knowledge. Even after the information revolution, reliable knowledge about the world remains fragmented and unstructured. Build the next generation of search engines to genuinely make the world’s knowledge useful for supporting societal goals.

We need to put these tools towards supporting shared world views of the state of the planet based on the best science. New AI tools being developed by startups like Iris.ai can help see through the fog. From Alexa to Google Home and Siri, the future is “Voice”, but who chooses the information source? The highest bidder? Again, the implications for climate are huge.

Create new standards for digital advertising and marketing

Half of global ad revenue will soon be online, and largely going to a small handful of companies. How about creating a novel ethical standard on what is advertised and where? Companies could consider promoting sustainable choices and healthy lifestyles and limiting advertising of high-emissions products such as cheap flights.

We are what we eat

It is no secret that tech is about to disrupt grocery. The supermarkets of the future will be built on personal consumer data. With about two billion people either obese or overweight, revolutions in choice architecture could support positive diet choices, reduce meat consumption, halve food waste and, into the bargain, slash greenhouse gas emissions.

The future of transport is not cars, it’s data

The 2020s look set to be the biggest disruption of the automobile industry since Henry Ford unveiled the Model T. Two seismic shifts are on their way.

First, electric cars now compete favorably with petrol engines on range. Growth will reach an inflection point within a year or two once prices reach parity. The death of the internal combustion engine in Europe and Asia is assured with end dates announced by China, India, France, the UK, and most of Scandinavia. Dates range from 2025 (Norway) to 2040 (UK and China).

Tech giants can accelerate the demise. Uber recently announced a passenger surcharge to help London drivers save around $1,500 a year towards the cost of an electric car.

Second, driverless cars can shift the transport economic model from ownership to service and ride sharing. A complete shift away from privately-owned vehicles is around the corner, with large implications for emissions.

Clean-energy living and working

Most buildings are barely used and inefficiently heated and cooled. Digitization can slash this waste and its corresponding emissions through measurement, monitoring, and new business models to use office space. While, just a few unicorns are currently in this space, the potential is enormous. Buildings are one of the five biggest sources of emissions, yet have the potential to become clean energy producers in a distributed energy network.

Creating liveable cities

More cities are setting ambitious climate targets to halve emissions in a decade or even less. Tech companies can support this transition by driving demand for low-carbon services for their workforces and offices, but also by providing tools to help monitor emissions and act to reduce them. Google, for example, is collecting travel and other data from across cities to estimate emissions in real time. This is possible through technologies like artificial intelligence and the internet of things. But beware of smart cities that turn out to be not so smart. Efficiencies can reduce resilience when cities face crises.

It’s a Start
Of course, it will take more than tech to solve the climate crisis. But tech is a wildcard. The actions of the current tech giants and their acolytes could serve to destabilize the climate further or bring it under control.

We need a new social contract between tech companies and society to achieve societal goals. The alternative is unthinkable. Without drastic action now, climate chaos threatens to engulf us all. As this future approaches, regulators will be forced to take ever more draconian action to rein in the problem. Acting now will reduce that risk.

Note: A version of this article was originally published on World Economic Forum

Image Credit: Bruce Rolff / Shutterstock.com Continue reading

Posted in Human Robots

#434843 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Open AI’s Dota 2 AI Steamrolls World Champion e-Sports Team With Back-to-Back Victories
Nick Statt | The Verge
“…[OpenAI cofounder and CEO, Sam Altman] tells me there probably does not exist a video game out there right now that a system like OpenAI Five can’t eventually master at a level beyond human capability. For the broader AI industry, mastering video games may soon become passé, simple table stakes required to prove your system can learn fast and act in a way required to tackle tougher, real-world tasks with more meaningful benefits.”

ROBOTICS
Boston Dynamics Debuts the Production Version of SpotMini
Brian Heater, Catherine Shu | TechCrunch
“SpotMini is the first commercial robot Boston Dynamics is set to release, but as we learned earlier, it certainly won’t be the last. The company is looking to its wheeled Handle robot in an effort to push into the logistics space. It’s a super-hot category for robotics right now. Notably, Amazon recently acquired Colorado-based start up Canvas to add to its own arm of fulfillment center robots.”

NEUROSCIENCE
Scientists Restore Some Brain Cell Functions in Pigs Four Hours After Death
Joel Achenbach | The Washington Post
“The ethicists say this research can blur the line between life and death, and could complicate the protocols for organ donation, which rely on a clear determination of when a person is dead and beyond resuscitation.”

BIOTECH
How Scientists 3D Printed a Tiny Heart From Human Cells
Yasmin Saplakoglu | Live Science
“Though the heart is much smaller than a human’s (it’s only the size of a rabbit’s), and there’s still a long way to go until it functions like a normal heart, the proof-of-concept experiment could eventually lead to personalized organs or tissues that could be used in the human body…”

SPACE
The Next Clash of Silicon Valley Titans Will Take Place in Space
Luke Dormehl | Digital Trends
“With bold plans that call for thousands of new satellites being put into orbit and astronomical costs, it’s going to be fascinating to observe the next phase of the tech platform battle being fought not on our desktops or mobile devices in our pockets, but outside of Earth’s atmosphere.”

FUTURE HISTORY
The Images That Could Help Rebuild Notre-Dame Cathedral
Alexis C. Madrigal | The Atlantic
“…in 2010, [Andrew] Tallon, an art professor at Vassar, took a Leica ScanStation C10 to Notre-Dame and, with the assistance of Columbia’s Paul Blaer, began to painstakingly scan every piece of the structure, inside and out. …Over five days, they positioned the scanner again and again—50 times in all—to create an unmatched record of the reality of one of the world’s most awe-inspiring buildings, represented as a series of points in space.”

AUGMENTED REALITY
Mapping Our World in 3D Will Let Us Paint Streets With Augmented Reality
Charlotte Jee | MIT Technology Review
“Scape wants to use its location services to become the underlying infrastructure upon which driverless cars, robotics, and augmented-reality services sit. ‘Our end goal is a one-to-one map of the world covering everything,’ says Miller. ‘Our ambition is to be as invisible as GPS is today.’i”

Image Credit: VAlex / Shutterstock.com Continue reading

Posted in Human Robots