Tag Archives: created

#438785 Video Friday: A Blimp For Your Cat

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Shiny robotic cat toy blimp!

I am pretty sure this is Google Translate getting things wrong, but the About page mentions that the blimp will “take you to your destination after appearing in the death of God.”

[ NTT DoCoMo ] via [ RobotStart ]

If you have yet to see this real-time video of Perseverance landing on Mars, drop everything and watch it.

During the press conference, someone commented that this is the first time anyone on the team who designed and built this system has ever seen it in operation, since it could only be tested at the component scale on Earth. This landing system has blown my mind since Curiosity.

Here's a better look at where Percy ended up:

[ NASA ]

The fact that Digit can just walk up and down wet, slippery, muddy hills without breaking a sweat is (still) astonishing.

[ Agility Robotics ]

SkyMul wants drones to take over the task of tying rebar, which looks like just the sort of thing we'd rather robots be doing so that we don't have to:

The tech certainly looks promising, and SkyMul says that they're looking for some additional support to bring things to the pilot stage.

[ SkyMul ]

Thanks Eohan!

Flatcat is a pet-like, playful robot that reacts to touch. Flatcat feels everything exactly: Cuddle with it, romp around with it, or just watch it do weird things of its own accord. We are sure that flatcat will amaze you, like us, and caress your soul.

I don't totally understand it, but I want it anyway.

[ Flatcat ]

Thanks Oswald!

This is how I would have a romantic dinner date if I couldn't get together in person. Herman the UR3 and an OptiTrack system let me remotely make a romantic meal!

[ Dave's Armoury ]

Here, we propose a novel design of deformable propellers inspired by dragonfly wings. The structure of these propellers includes a flexible segment similar to the nodus on a dragonfly wing. This flexible segment can bend, twist and even fold upon collision, absorbing force upon impact and protecting the propeller from damage.

[ Paper ]

Thanks Van!

In the 1970s, The CIA​ created the world's first miniaturized unmanned aerial vehicle, or UAV, which was intended to be a clandestine listening device. The Insectothopter was never deployed operationally, but was still revolutionary for its time.

It may never have been deployed (not that they'll admit to, anyway), but it was definitely operational and could fly controllably.

[ CIA ]

Research labs are starting to get Digits, which means we're going to get a much better idea of what its limitations are.

[ Ohio State ]

This video shows the latest achievements for LOLA walking on undetected uneven terrain. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

We define “robotic contact juggling” to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or “hand.” While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand.

[ Paper ]

Thanks Fan!

A couple of new cobots from ABB, designed to work safely around humans.

[ ABB ]

Thanks Fan!

It's worth watching at least a little bit of Adam Savage testing Spot's new arm, because we get to see Spot try, fail, and eventually succeed at an autonomous door-opening behavior at the 10 minute mark.

[ Tested ]

SVR discusses diversity with guest speakers Dr. Michelle Johnson from the GRASP Lab at UPenn; Dr Ariel Anders from Women in Robotics and first technical hire at Robust.ai; Alka Roy from The Responsible Innovation Project; and Kenechukwu C. Mbanesi and Kenya Andrews from Black in Robotics. The discussion here is moderated by Dr. Ken Goldberg—artist, roboticist and Director of the CITRIS People and Robots Lab—and Andra Keay from Silicon Valley Robotics.

[ SVR ]

RAS presents a Soft Robotics Debate on Bioinspired vs. Biohybrid Design.

In this debate, we will bring together experts in Bioinspiration and Biohybrid design to discuss the necessary steps to make more competent soft robots. We will try to answer whether bioinspired research should focus more on developing new bioinspired material and structures or on the integration of living and artificial structures in biohybrid designs.

[ RAS SoRo ]

IFRR presents a Colloquium on Human Robot Interaction.

Across many application domains, robots are expected to work in human environments, side by side with people. The users will vary substantially in background, training, physical and cognitive abilities, and readiness to adopt technology. Robotic products are expected to not only be intuitive, easy to use, and responsive to the needs and states of their users, but they must also be designed with these differences in mind, making human-robot interaction (HRI) a key area of research.

[ IFRR ]

Vijay Kumar, Nemirovsky Family Dean and Professor at Penn Engineering, gives an introduction to ENIAC day and David Patterson, Pardee Professor of Computer Science, Emeritus at the University of California at Berkeley, speaks about the legacy of the ENIAC and its impact on computer architecture today. This video is comprised of lectures one and two of nine total lectures in the ENIAC Day series.

There are more interesting ENIAC videos at the link below, but we'll highlight this particular one, about the women of the ENIAC, also known as the First Programmers.

[ ENIAC Day ] Continue reading

Posted in Human Robots

#438779 Meet Catfish Charlie, the CIA’s ...

Photo: CIA Museum

CIA roboticists designed Catfish Charlie to take water samples undetected. Why they wanted a spy fish for such a purpose remains classified.

In 1961, Tom Rogers of the Leo Burnett Agency created Charlie the Tuna, a jive-talking cartoon mascot and spokesfish for the StarKist brand. The popular ad campaign ran for several decades, and its catchphrase “Sorry, Charlie” quickly hooked itself in the American lexicon.

When the CIA’s Office of Advanced Technologies and Programs started conducting some fish-focused research in the 1990s, Charlie must have seemed like the perfect code name. Except that the CIA’s Charlie was a catfish. And it was a robot.

More precisely, Charlie was an unmanned underwater vehicle (UUV) designed to surreptitiously collect water samples. Its handler controlled the fish via a line-of-sight radio handset. Not much has been revealed about the fish’s construction except that its body contained a pressure hull, ballast system, and communications system, while its tail housed the propulsion. At 61 centimeters long, Charlie wouldn’t set any biggest-fish records. (Some species of catfish can grow to 2 meters.) Whether Charlie reeled in any useful intel is unknown, as details of its missions are still classified.

For exploring watery environments, nothing beats a robot
The CIA was far from alone in its pursuit of UUVs nor was it the first agency to do so. In the United States, such research began in earnest in the 1950s, with the U.S. Navy’s funding of technology for deep-sea rescue and salvage operations. Other projects looked at sea drones for surveillance and scientific data collection.

Aaron Marburg, a principal electrical and computer engineer who works on UUVs at the University of Washington’s Applied Physics Laboratory, notes that the world’s oceans are largely off-limits to crewed vessels. “The nature of the oceans is that we can only go there with robots,” he told me in a recent Zoom call. To explore those uncharted regions, he said, “we are forced to solve the technical problems and make the robots work.”

Image: Thomas Wells/Applied Physics Laboratory/University of Washington

An oil painting commemorates SPURV, a series of underwater research robots built by the University of Washington’s Applied Physics Lab. In nearly 400 deployments, no SPURVs were lost.

One of the earliest UUVs happens to sit in the hall outside Marburg’s office: the Self-Propelled Underwater Research Vehicle, or SPURV, developed at the applied physics lab beginning in the late ’50s. SPURV’s original purpose was to gather data on the physical properties of the sea, in particular temperature and sound velocity. Unlike Charlie, with its fishy exterior, SPURV had a utilitarian torpedo shape that was more in line with its mission. Just over 3 meters long, it could dive to 3,600 meters, had a top speed of 2.5 m/s, and operated for 5.5 hours on a battery pack. Data was recorded to magnetic tape and later transferred to a photosensitive paper strip recorder or other computer-compatible media and then plotted using an IBM 1130.

Over time, SPURV’s instrumentation grew more capable, and the scope of the project expanded. In one study, for example, SPURV carried a fluorometer to measure the dispersion of dye in the water, to support wake studies. The project was so successful that additional SPURVs were developed, eventually completing nearly 400 missions by the time it ended in 1979.

Working on underwater robots, Marburg says, means balancing technical risks and mission objectives against constraints on funding and other resources. Support for purely speculative research in this area is rare. The goal, then, is to build UUVs that are simple, effective, and reliable. “No one wants to write a report to their funders saying, ‘Sorry, the batteries died, and we lost our million-dollar robot fish in a current,’ ” Marburg says.

A robot fish called SoFi
Since SPURV, there have been many other unmanned underwater vehicles, of various shapes and sizes and for various missions, developed in the United States and elsewhere. UUVs and their autonomous cousins, AUVs, are now routinely used for scientific research, education, and surveillance.

At least a few of these robots have been fish-inspired. In the mid-1990s, for instance, engineers at MIT worked on a RoboTuna, also nicknamed Charlie. Modeled loosely on a blue-fin tuna, it had a propulsion system that mimicked the tail fin of a real fish. This was a big departure from the screws or propellers used on UUVs like SPURV. But this Charlie never swam on its own; it was always tethered to a bank of instruments. The MIT group’s next effort, a RoboPike called Wanda, overcame this limitation and swam freely, but never learned to avoid running into the sides of its tank.

Fast-forward 25 years, and a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled SoFi, a decidedly more fishy robot designed to swim next to real fish without disturbing them. Controlled by a retrofitted Super Nintendo handset, SoFi could dive more than 15 meters, control its own buoyancy, and swim around for up to 40 minutes between battery charges. Noting that SoFi’s creators tested their robot fish in the gorgeous waters off Fiji, IEEE Spectrum’s Evan Ackerman noted, “Part of me is convinced that roboticists take on projects like these…because it’s a great way to justify a trip somewhere exotic.”

SoFi, Wanda, and both Charlies are all examples of biomimetics, a term coined in 1974 to describe the study of biological mechanisms, processes, structures, and substances. Biomimetics looks to nature to inspire design.

Sometimes, the resulting technology proves to be more efficient than its natural counterpart, as Richard James Clapham discovered while researching robotic fish for his Ph.D. at the University of Essex, in England. Under the supervision of robotics expert Huosheng Hu, Clapham studied the swimming motion of Cyprinus carpio, the common carp. He then developed four robots that incorporated carplike swimming, the most capable of which was iSplash-II. When tested under ideal conditions—that is, a tank 5 meters long, 2 meters wide, and 1.5 meters deep—iSpash-II obtained a maximum velocity of 11.6 body lengths per second (or about 3.7 m/s). That’s faster than a real carp, which averages a top velocity of 10 body lengths per second. But iSplash-II fell short of the peak performance of a fish darting quickly to avoid a predator.

Of course, swimming in a test pool or placid lake is one thing; surviving the rough and tumble of a breaking wave is another matter. The latter is something that roboticist Kathryn Daltorio has explored in depth.

Daltorio, an assistant professor at Case Western Reserve University and codirector of the Center for Biologically Inspired Robotics Research there, has studied the movements of cockroaches, earthworms, and crabs for clues on how to build better robots. After watching a crab navigate from the sandy beach to shallow water without being thrown off course by a wave, she was inspired to create an amphibious robot with tapered, curved feet that could dig into the sand. This design allowed her robot to withstand forces up to 138 percent of its body weight.

Photo: Nicole Graf

This robotic crab created by Case Western’s Kathryn Daltorio imitates how real crabs grab the sand to avoid being toppled by waves.

In her designs, Daltorio is following architect Louis Sullivan’s famous maxim: Form follows function. She isn’t trying to imitate the aesthetics of nature—her robot bears only a passing resemblance to a crab—but rather the best functionality. She looks at how animals interact with their environments and steals evolution’s best ideas.

And yet, Daltorio admits, there is also a place for realistic-looking robotic fish, because they can capture the imagination and spark interest in robotics as well as nature. And unlike a hyperrealistic humanoid, a robotic fish is unlikely to fall into the creepiness of the uncanny valley.

In writing this column, I was delighted to come across plenty of recent examples of such robotic fish. Ryomei Engineering, a subsidiary of Mitsubishi Heavy Industries, has developed several: a robo-coelacanth, a robotic gold koi, and a robotic carp. The coelacanth was designed as an educational tool for aquariums, to present a lifelike specimen of a rarely seen fish that is often only known by its fossil record. Meanwhile, engineers at the University of Kitakyushu in Japan created Tai-robot-kun, a credible-looking sea bream. And a team at Evologics, based in Berlin, came up with the BOSS manta ray.

Whatever their official purpose, these nature-inspired robocreatures can inspire us in return. UUVs that open up new and wondrous vistas on the world’s oceans can extend humankind’s ability to explore. We create them, and they enhance us, and that strikes me as a very fair and worthy exchange.

This article appears in the March 2021 print issue as “Catfish, Robot, Swimmer, Spy.”

About the Author
Allison Marsh is an associate professor of history at the University of South Carolina and codirector of the university’s Ann Johnson Institute for Science, Technology & Society. Continue reading

Posted in Human Robots

#436760 Intelligent Humanoid Service Robot

UBTECH Robotics has created Walker, a humanoid service robot with a full range of sensors including force, vision, audio, and spatial perception.

Posted in Human Robots

#438014 Meet Blueswarm, a Smart School of ...

Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.

Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.

The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.

“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”

The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.

Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.

“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.

In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.

“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”

Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.

“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.

The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.

“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading

Posted in Human Robots

#437982 Superintelligent AI May Be Impossible to ...

It may be theoretically impossible for humans to control a superintelligent AI, a new study finds. Worse still, the research also quashes any hope for detecting such an unstoppable AI when it’s on the verge of being created.

Slightly less grim is the timetable. By at least one estimate, many decades lie ahead before any such existential computational reckoning could be in the cards for humanity.

Alongside news of AI besting humans at games such as chess, Go and Jeopardy have come fears that superintelligent machines smarter than the best human minds might one day run amok. “The question about whether superintelligence could be controlled if created is quite old,” says study lead author Manuel Alfonseca, a computer scientist at the Autonomous University of Madrid. “It goes back at least to Asimov’s First Law of Robotics, in the 1940s.”

The Three Laws of Robotics, first introduced in Isaac Asimov's 1942 short story “Runaround,” are as follows:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

In 2014, philosopher Nick Bostrom, director of the Future of Humanity Institute at the University of Oxford, not only explored ways in which a superintelligent AI could destroy us but also investigated potential control strategies for such a machine—and the reasons they might not work.

Bostrom outlined two possible types of solutions of this “control problem.” One is to control what the AI can do, such as keeping it from connecting to the Internet, and the other is to control what it wants to do, such as teaching it rules and values so it would act in the best interests of humanity. The problem with the former is that Bostrom thought a supersmart machine could probably break free from any bonds we could make. With the latter, he essentially feared that humans might not be smart enough to train a superintelligent AI.

Now Alfonseca and his colleagues suggest it may be impossible to control a superintelligent AI, due to fundamental limits inherent to computing itself. They detailed their findings this month in the Journal of Artificial Intelligence Research.

The researchers suggested that any algorithm that sought to ensure a superintelligent AI cannot harm people had to first simulate the machine’s behavior to predict the potential consequences of its actions. This containment algorithm then would need to halt the supersmart machine if it might indeed do harm.

However, the scientists said it was impossible for any containment algorithm to simulate the AI’s behavior and predict with absolute certainty whether its actions might lead to harm. The algorithm could fail to correctly simulate the AI’s behavior or accurately predict the consequences of the AI’s actions and not recognize such failures.

“Asimov’s first law of robotics has been proved to be incomputable,” Alfonseca says, “and therefore unfeasible.”

We may not even know if we have created a superintelligent machine, the researchers say. This is a consequence of Rice’s theorem, which essentially states that one cannot in general figure anything out about what a computer program might output just by looking at the program, Alfonseca explains.

On the other hand, there’s no need to spruce up the guest room for our future robot overlords quite yet. Three important caveats to the research still leave plenty of uncertainty to the group’s predictions.

First, Alfonseca estimates AI’s moment of truth remains, he says, “At least two centuries in the future.”

Second, he says researchers do not know if so-called artificial general intelligence, also known as strong AI, is theoretically even feasible. “That is, a machine as intelligent as we are in an ample variety of fields,” Alfonseca explains.

Last, Alfonseca says, “We have not proved that superintelligences can never be controlled—only that they can’t always be controlled.”

Although it may not be possible to control a superintelligent artificial general intelligence, it should be possible to control a superintelligent narrow AI—one specialized for certain functions instead of being capable of a broad range of tasks like humans. “We already have superintelligences of this type,” Alfonseca says. “For instance, we have machines that can compute mathematics much faster than we can. This is [narrow] superintelligence, isn’t it?” Continue reading

Posted in Human Robots