Tag Archives: could

#439518 Rocket Mining System Could Blast Ice ...

Realistically, in-situ resource utilization seems like the only way of sustaining human presence outside of low Earth orbit. This is certainly the case for Mars, and it’s likely also the case for the Moon—even though the Moon is not all that far away (in the context of the solar system). It’s stupendously inefficient to send stuff there, especially when that stuff is, with a little bit of effort, available on the Moon already.

A mix of dust, rocks, and significant concentrations of water ice can be found inside permanently shaded lunar craters at the Moon’s south pole. If that water ice can be extracted, it can be turned into breathable oxygen, rocket fuel, or water for thirsty astronauts. The extraction and purification of this dirty lunar ice is not an easy problem, and NASA is interested in creative solutions that can scale. The agency has launched a competition to solve this lunar ice mining challenge, and one of competitors thinks they can do it with a big robot, some powerful vacuums, and a rocket engine used like a drilling system. (It’s what they call, brace yourself, their Resource Ore Concentrator using Kinetic Energy Targeted Mining—ROCKET M.)

This method disrupts lunar soil with a series of rocket plumes that fluidize ice regolith by exposing it to direct convective heating. It utilizes a 100 lbf rocket engine under a pressurized dome to enable deep cratering more than 2 meters below the lunar surface. During this process, ejecta from multiple rocket firings blasts up into the dome and gets funneled through a vacuum-like system that separates ice particles from the remaining dust and transports it into storage containers.

Unlike traditional mechanical excavators, the rocket mining approach would allow us to access frozen volatiles around boulders, breccia, basalt, and other obstacles. And most importantly, it’s scalable and cost effective. Our system doesn’t require heavy machinery or ongoing maintenance. The stored water can be electrolyzed as needed into oxygen and hydrogen utilizing solar energy to continue powering the rocket engine for more than 5 years of water excavation! This system would also allow us to rapidly excavate desiccated regolith layers that can be collected and used to develop additively manufactured structures.

Despite the horrific backronym (it couldn’t be a space mission without one, right?) the solid team behind this rocket mining system makes me think that it’s not quite as crazy as it sounds. Masten has built a variety of operational rocket systems, and is developing some creative and useful ideas with NASA funding like rockets that can build their own landing pads as they land. Honeybee Robotics has developed hardware for a variety of missions, including Mars missions. And Lunar Outpost were some of the folks behind the MOXIE system on the Perseverance Mars rover.

It’s a little bit tricky to get a sense of how well a concept like this might work. The concept video looks pretty awesome, but there’s certainly a lot of work that needs to be done to prove the rocket mining system out, especially once you get past the component level. It’s good to see that some testing has already been done on Earth to characterize how rocket plumes interact with a simulated icy lunar surface, but managing all the extra dust and rocks that will get blasted up along with the ice particles could be the biggest challenge here, especially for a system that has to excavate a lot of this stuff over a long period of time.

Fortunately, this is all part of what NASA will be evaluating through its Break the Ice Challenge. The Challenge is currently in Phase 1, and while I can’t find any information on Phase 2, the fact that there’s a Phase 1 does imply that the winning team (or teams) might have the opportunity to further prove out their concept in additional challenge phases. The Phase 1 winners are scheduled to be announced on August 13. Continue reading

Posted in Human Robots

#439342 Why Flying Cars Could Be Here Within the ...

Flying cars are almost a byword for the misplaced optimism of technologists, but recent news suggests their future may be on slightly firmer footing. The industry has seen a major influx of capital and big automakers seem to be piling in.

What actually constitutes a flying car has changed many times over the decades since the cartoon, The Jetsons, introduced the idea to the popular imagination. Today’s incarnation is known more formally as an electric vertical takeoff and landing (eVTOL) aircraft.

As the name suggests, the vehicles run on battery power rather than aviation fuel, and they’re able to take off and land like a helicopter. Designs vary from what are essentially gigantic multi-rotor drones to small fixed-wing aircraft with rotors that can tilt up or down, allowing them to hover or fly horizontally (like an airplane).

Aerospace companies and startups have been working on the idea for a number of years, but recent news suggests it might be coming closer to fruition. Last Monday, major automakers Hyundai and GM said they are developing vehicles of their own and are bullish about the prospects of this new mode of transport.

And the week prior, British flying car maker Vertical Aerospace announced plans to go public in a deal that values the company at $2.2 billion. Vertical Aerospace also said it had received $4 billion worth of preorders, including from American Airlines and Virgin Atlantic.

The deal was the latest installment in a flood of capital into the sector, with competitors Joby Aviation, Archer Aviation, and Lilium all recently announcing deals to go public too. Also joining them is Blade Urban Mobility, which currently operates heliports but plans to accommodate flying cars when they become available.

When exactly that will be is still uncertain, but there seems to be growing consensus that the second half of this decade might be a realistic prospect. Vertical is aiming to start deliveries by 2024. And the other startups, who already have impressive prototypes, are on a similar timeline.

Hyundai’s global chief operating officer, José Muñoz, told attendees at Reuters’ Car of the Future conference that the company is targeting a 2025 rollout of an air taxi service, while GM’s vice president of global innovation, Pamela Fletcher, went with a more cautious 2030 target. They’re not the only automakers getting in on the act, with Toyota, Daimler, and China’s Geely all developing vehicles alone or in partnership with startups.

Regulators also seem to be increasingly open to the idea.

In January, the Federal Aviation Administration (FAA) announced it expects to certify the first eVTOLs later this year and have regulations around their operation in place by 2023. And last month the European Union Aviation Safety Agency said it expected air taxi services to be running by 2024 or 2025.

While it seems fairly settled that the earliest flying cars will be taxis rather than private vehicles, a major outstanding question is the extent to which they will be automated.

The majority of prototypes currently rely on a human to pilot them. But earlier this month Larry Page’s air taxi startup Kitty Hawk announced it would buy drone maker 3D Robotics as it seeks to shift to a fully autonomous setup. The FAA recently created a new committee to draft a regulatory path for beyond-visual-line-of-sight (BVLOS) autonomous drone flights. This would likely be a first step along the path to allowing unmanned passenger aircraft.

What seems more certain is that there will be winners and losers in the recent rush to corner the air mobility market. As Chris Bryant points out in Bloomberg, these companies still face a host of technological, regulatory, and social hurdles, and the huge amounts of money flooding into the sector may be hard to justify.

Regardless of which companies make it out the other side, it’s looking increasingly likely that air taxis will be a significant new player in urban transport by the end of the decade.

Image Credit: Joby Aviation Continue reading

Posted in Human Robots

#439333 Rocket Mining System Could Blast Ice ...

Realistically, in-situ resource utilization seems like the only way of sustaining human presence outside of low Earth orbit. This is certainly the case for Mars, and it’s likely also the case for the Moon—even though the Moon is not all that far away (in the context of the solar system). It’s stupendously inefficient to send stuff there, especially when that stuff is, with a little bit of effort, available on the Moon already.

A mix of dust, rocks, and significant concentrations of water ice can be found inside permanently shaded lunar craters at the Moon’s south pole. If that water ice can be extracted, it can be turned into breathable oxygen, rocket fuel, or water for thirsty astronauts. The extraction and purification of this dirty lunar ice is not an easy problem, and NASA is interested in creative solutions that can scale. The agency has launched a competition to solve this lunar ice mining challenge, and one of competitors thinks they can do it with a big robot, some powerful vacuums, and a rocket engine used like a drilling system. (It’s what they call, brace yourself, their Resource Ore Concentrator using Kinetic Energy Targeted Mining—ROCKET M.)

This method disrupts lunar soil with a series of rocket plumes that fluidize ice regolith by exposing it to direct convective heating. It utilizes a 100 lbf rocket engine under a pressurized dome to enable deep cratering more than 2 meters below the lunar surface. During this process, ejecta from multiple rocket firings blasts up into the dome and gets funneled through a vacuum-like system that separates ice particles from the remaining dust and transports it into storage containers.

Unlike traditional mechanical excavators, the rocket mining approach would allow us to access frozen volatiles around boulders, breccia, basalt, and other obstacles. And most importantly, it’s scalable and cost effective. Our system doesn’t require heavy machinery or ongoing maintenance. The stored water can be electrolyzed as needed into oxygen and hydrogen utilizing solar energy to continue powering the rocket engine for more than 5 years of water excavation! This system would also allow us to rapidly excavate desiccated regolith layers that can be collected and used to develop additively manufactured structures.

Despite the horrific backronym (it couldn’t be a space mission without one, right?) the solid team behind this rocket mining system makes me think that it’s not quite as crazy as it sounds. Masten has built a variety of operational rocket systems, and is developing some creative and useful ideas with NASA funding like rockets that can build their own landing pads as they land. Honeybee Robotics has developed hardware for a variety of missions, including Mars missions. And Lunar Outpost were some of the folks behind the MOXIE system on the Perseverance Mars rover.

It’s a little bit tricky to get a sense of how well a concept like this might work. The concept video looks pretty awesome, but there’s certainly a lot of work that needs to be done to prove the rocket mining system out, especially once you get past the component level. It’s good to see that some testing has already been done on Earth to characterize how rocket plumes interact with a simulated icy lunar surface, but managing all the extra dust and rocks that will get blasted up along with the ice particles could be the biggest challenge here, especially for a system that has to excavate a lot of this stuff over a long period of time.

Fortunately, this is all part of what NASA will be evaluating through its Break the Ice Challenge. The Challenge is currently in Phase 1, and while I can’t find any information on Phase 2, the fact that there’s a Phase 1 does imply that the winning team (or teams) might have the opportunity to further prove out their concept in additional challenge phases. The Phase 1 winners are scheduled to be announced on August 13. Continue reading

Posted in Human Robots

#439247 Drones and Sensors Could Spot Fires ...

The speed at which a wildfire can rip through an area and wreak havoc is nothing short of awe-inspiring and terrifying. Early detection of these events is critical for fire management efforts, whether that involves calling in firefighters or evacuating nearby communities.

Currently, early fire detection in remote areas is typically done by satellite—but this approach can be hindered by cloud cover. What’s more, even the most advanced satellite systems detect fires once the burning area reaches an average seize of 18.4 km2 (7.1 square miles).

To detect wildfires earlier on, some researchers are proposing a novel solution that harnesses a network of Internet of Things (IoT) sensors and a fleet of drones, or unmanned aerial vehicles (UAVs). The researchers tested their approach through simulations, described in a study published May 5 in IEEE Internet of Things Journal, finding that it can detect fires that are just 2.5 km2 (just under one square mile) in size with near perfect accuracy.

Their idea is timely, as climate change is driving an increase in wildfires around many regions of the world, as seen recently in California and Australia.

“In the last few years, the number, frequency, and severity of wildfires have increased dramatically worldwide, significantly impacting countries’ economies, ecosystems, and communities. Wildfire management presents a significant challenge in which early fire detection is key,” emphasizes Osama Bushnaq, a senior researcher at the Autonomous Robotics Research Center of the Technology Innovation Institute in Abu Dhabi, who was involved in the study.

The approach that Bushnaq and his colleagues are proposing involves a network of IoT sensors scattered throughout regions of concern, such as a national park or forests situated near communities. If a fire ignites, IoT devices deployed in the area will detect it and wait until a patrolling UAV is within transmission range to report their measurements. If a UAV receives multiple positive detections by the IoT devices, it will notify the nearby firefighting department that a wildfire has been verified.

The researchers evaluated a number of different UAVs and IoT sensors based on cost and features to determine the optimal combinations. Next, they tested their UAV-IoT approach through simulations, whereby 420 IoT sensors were deployed and 18 UAVs patrolled per square kilometer of simulated forest. The system could detect fires covering 2.5 km2 with greater than 99 percent accuracy. For smaller fires covering 0.5 km2 the approach yielded 69 percent accuracy.

These results suggest that, if an optimal number of UAVs and IoT devices are present, wildfires can be detected in much shorter time than with the satellite imaging. But Bushnaq acknowledges that this approach has its limitations. “UAV-IoT networks can only cover relatively smaller areas,” he explains. “Therefore, the UAV-IoT network would be particularly suitable for wildfire detection at high-risk regions.”

For these reasons, the researchers are proposing that UAV-IoT approach be used alongside satellite imaging, which can cover vast areas but with less wildfire detection speed and reliability.

Moving forward, the team plans to explore ways of further improving upon this approach, for example by optimizing the trajectory of the UAVs or addressing issues related to the battery life of UAVs.

Bushnaq envisions such UAV-IoT systems having much broader applications, too. “Although the system is designed for wildfire detection, it can be used for monitoring different forest parameters, such as wind speed, moisture content, or temperature estimation,” he says, noting that such a system could also be extended beyond the forest setting, for example by monitoring oil spills in bodies of water. Continue reading

Posted in Human Robots

#439208 How a slender, snake-like robot could ...

You might call it “zoobotics.” Jessica Burgner-Kahrs, the director of the Continuum Robotics Lab at U of T Mississauga, and her team are building very slender, flexible and extensible robots, a few millimeters in diameter, for use in surgery and industry. Unlike humanoid robots, so-called continuum robots feature a long, limbless body—not unlike a snake's—that allows them to access difficult-to-reach places. Continue reading

Posted in Human Robots