Tag Archives: city

#437345 Moore’s Law Lives: Intel Says Chips ...

If you weren’t already convinced the digital world is taking over, you probably are now.

To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.

Six decades ago, this world didn’t exist.

A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.

But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.

In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.

“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”

Why the optimism?

Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.

Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.

Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.

The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).

Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.

FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.

Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.

This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.

Koduri said 3D chip stacking will quadruple transistor density.

A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.

Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”

But whether Intel’s vision pans out as planned is far from certain.

Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.

The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?

That said, demand for more computing power isn’t going anywhere.

Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.

There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.

Image credit: Laura Ockel / Unsplash Continue reading

Posted in Human Robots

#437258 This Startup Is 3D Printing Custom ...

Around 1.9 million people in the US are currently living with limb loss. The trauma of losing a limb is just the beginning of what amputees have to face, with the sky-high cost of prosthetics making their circumstance that much more challenging.

Prosthetics can run over $50,000 for a complex limb (like an arm or a leg) and aren’t always covered by insurance. As if shelling out that sum one time wasn’t costly enough, kids’ prosthetics need to be replaced as they outgrow them, meaning the total expense can reach hundreds of thousands of dollars.

A startup called Unlimited Tomorrow is trying to change this, and using cutting-edge technology to do so. Based in Rhinebeck, New York, a town about two hours north of New York City, the company was founded by 23-year-old Easton LaChappelle. He’d been teaching himself the basics of robotics and building prosthetics since grade school (his 8th grade science fair project was a robotic arm) and launched his company in 2014.

After six years of research and development, the company launched its TrueLimb product last month, describing it as an affordable, next-generation prosthetic arm using a custom remote-fitting process where the user never has to leave home.

The technologies used for TrueLimb’s customization and manufacturing are pretty impressive, in that they both cut costs and make the user’s experience a lot less stressful.

For starters, the entire purchase, sizing, and customization process for the prosthetic can be done remotely. Here’s how it works. First, prospective users fill out an eligibility form and give information about their residual limb. If they’re a qualified candidate for a prosthetic, Unlimited Tomorrow sends them a 3D scanner, which they use to scan their residual limb.

The company uses the scans to design a set of test sockets (the component that connects the residual limb to the prosthetic), which are mailed to the user. The company schedules a video meeting with the user for them to try on and discuss the different sockets, with the goal of finding the one that’s most comfortable; new sockets can be made based on the information collected during the video consultation. The user selects their skin tone from a swatch with 450 options, then Unlimited Tomorrow 3D prints and assembles the custom prosthetic and tests it before shipping it out.

“We print the socket, forearm, palm, and all the fingers out of durable nylon material in full color,” LaChappelle told Singularity Hub in an email. “The only components that aren’t 3D printed are the actuators, tendons, electronics, batteries, sensors, and the nuts and bolts. We are an extreme example of final use 3D printing.”

Unlimited Tomorrow’s website lists TrueLimb’s cost as “as low as $7,995.” When you consider the customization and capabilities of the prosthetic, this is incredibly low. According to LaChappelle, the company created a muscle sensor that picks up muscle movement at a higher resolution than the industry standard electromyography sensors. The sensors read signals from nerves in the residual limb used to control motions like fingers bending. This means that when a user thinks about bending a finger, the nerve fires and the prosthetic’s sensors can detect the signal and translate it into the action.

“Working with children using our device, I’ve witnessed a physical moment where the brain “clicks” and starts moving the hand rather than focusing on moving the muscles,” LaChappelle said.

The cost savings come both from the direct-to-consumer model and the fact that Unlimited Tomorrow doesn’t use any outside suppliers. “We create every piece of our product,” LaChappelle said. “We don’t rely on another prosthetic manufacturer to make expensive sensors or electronics. By going direct to consumer, we cut out all the middlemen that usually drive costs up.” Similar devices on the market can cost up to $100,000.

Unlimited Tomorrow is primarily focused on making prosthetics for kids; when they outgrow their first TrueLimb, they send it back, where the company upcycles the expensive quality components and integrates them into a new customized device.

Unlimited Tomorrow isn’t the first to use 3D printing for prosthetics. Florida-based Limbitless Solutions does so too, and industry experts believe the technology is the future of artificial limbs.

“I am constantly blown away by this tech,” LaChappelle said. “We look at technology as the means to augment the human body and empower people.”

Image Credit: Unlimited Tomorrow Continue reading

Posted in Human Robots

#437230 How Drones and Aerial Vehicles Could ...

Drones, personal flying vehicles, and air taxis may be part of our everyday life in the very near future. Drones and air taxis will create new means of mobility and transport routes. Drones will be used for surveillance, delivery, and in the construction sector as it moves towards automation.

The introduction of these aerial craft into cities will require the built environment to change dramatically. Drones and other new aerial vehicles will require landing pads, charging points, and drone ports. They could usher in new styles of building, and lead to more sustainable design.

My research explores the impact of aerial vehicles on urban design, mapping out possible future trajectories.

An Aerial Age
Already, civilian drones can vary widely in size and complexity. They can carry a range of items from high-resolution cameras, delivery mechanisms, and thermal image technology to speakers and scanners. In the public sector, drones are used in disaster response and by the fire service to tackle fires which could endanger firefighters.

During the coronavirus pandemic, drones have been used by the police to enforce lockdown. Drones normally used in agriculture have sprayed disinfectant over cities. In the UK, drone delivery trials are taking place to carry medical items to the Isle of Wight.

Alongside drones, our future cities could also be populated by vertical takeoff and landing craft (VTOL), used as private vehicles and air taxis.

These vehicles are familiar to sci-fi fans. The late Syd Mead’s illustrations of the Spinner VTOL craft in the film Blade Runner captured the popular imagination, and the screens for the Spinners in Blade Runner 2049 created by Territory Studio provided a careful design fiction of the experience of piloting these types of vehicle.

Now, though, these flying vehicles are reality. A number of companies are developing eVTOL with electric multi-rotor jets, and a whole new motorsport is being established around them.

These aircraft have the potential to change our cities. However, they need to be tested extensively in urban airspace. A study conducted by Airbus found that public concerns about VTOL use focused on the safety of those on the ground and noise emissions.

New Cities
The widespread adoption of drones and VTOL will lead to new architecture and infrastructure. Existing buildings will require adaptations: landing pads, solar photovoltaic panels for energy efficiency, charging points for delivery drones, and landscaping to mitigate noise emissions.

A number of companies are already trialing drone delivery services. Existing buildings will need to be adapted to accommodate these new networks, and new design principles will have to be implemented in future ones.

The architect Saúl Ajuria Fernández has developed a design for a delivery drone port hub. This drone port acts like a beehive where drones recharge and collect parcels for distribution. Architectural firm Humphreys & Partners’ Pier 2, a design for a modular apartment building of the future, includes a cantilevered drone port for delivery services.

The Norman Foster Foundation has designed a drone port for delivery of medical supplies and other items for rural communities in Rwanda. The structure is also intended to function as a space for the public to congregate, as well as to receive training in robotics.

Drones may also help the urban environment become more sustainable. Researchers at the University of Stuttgart have developed a re-configurable architectural roof canopy system deployed by drones. By adjusting to follow the direction of the sun, the canopy provides shade and reduces reliance on ventilation systems.

Demand for air taxis and personal flying vehicles will develop where failures in other transport systems take place. The Airbus research found that of the cities surveyed, highest demand for VTOLs was in Los Angeles and Mexico City, urban areas famous for traffic pollution. To accommodate these aerial vehicles, urban space will need to transform to include landing pads, airport-like infrastructure, and recharge points.

Furthermore, this whole logistics system in lower airspace (below 500 feet), or what I term “hover space,” will need an urban traffic management system. One great example of how this hover space could work can be seen in a speculative project from design studio Superflux in their Drone Aviary project. A number of drones with different functions move around an urban area in a network, following different paths at varying heights.

We are at a critical period in urban history, faced by climatic breakdown and pandemic. Drones and aerial vehicles can be part of a profound rethink of the urban environment.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: NASA Continue reading

Posted in Human Robots

#437222 China and AI: What the World Can Learn ...

China announced in 2017 its ambition to become the world leader in artificial intelligence (AI) by 2030. While the US still leads in absolute terms, China appears to be making more rapid progress than either the US or the EU, and central and local government spending on AI in China is estimated to be in the tens of billions of dollars.

The move has led—at least in the West—to warnings of a global AI arms race and concerns about the growing reach of China’s authoritarian surveillance state. But treating China as a “villain” in this way is both overly simplistic and potentially costly. While there are undoubtedly aspects of the Chinese government’s approach to AI that are highly concerning and rightly should be condemned, it’s important that this does not cloud all analysis of China’s AI innovation.

The world needs to engage seriously with China’s AI development and take a closer look at what’s really going on. The story is complex and it’s important to highlight where China is making promising advances in useful AI applications and to challenge common misconceptions, as well as to caution against problematic uses.

Nesta has explored the broad spectrum of AI activity in China—the good, the bad, and the unexpected.

The Good
China’s approach to AI development and implementation is fast-paced and pragmatic, oriented towards finding applications which can help solve real-world problems. Rapid progress is being made in the field of healthcare, for example, as China grapples with providing easy access to affordable and high-quality services for its aging population.

Applications include “AI doctor” chatbots, which help to connect communities in remote areas with experienced consultants via telemedicine; machine learning to speed up pharmaceutical research; and the use of deep learning for medical image processing, which can help with the early detection of cancer and other diseases.

Since the outbreak of Covid-19, medical AI applications have surged as Chinese researchers and tech companies have rushed to try and combat the virus by speeding up screening, diagnosis, and new drug development. AI tools used in Wuhan, China, to tackle Covid-19 by helping accelerate CT scan diagnosis are now being used in Italy and have been also offered to the NHS in the UK.

The Bad
But there are also elements of China’s use of AI that are seriously concerning. Positive advances in practical AI applications that are benefiting citizens and society don’t detract from the fact that China’s authoritarian government is also using AI and citizens’ data in ways that violate privacy and civil liberties.

Most disturbingly, reports and leaked documents have revealed the government’s use of facial recognition technologies to enable the surveillance and detention of Muslim ethnic minorities in China’s Xinjiang province.

The emergence of opaque social governance systems that lack accountability mechanisms are also a cause for concern.

In Shanghai’s “smart court” system, for example, AI-generated assessments are used to help with sentencing decisions. But it is difficult for defendants to assess the tool’s potential biases, the quality of the data, and the soundness of the algorithm, making it hard for them to challenge the decisions made.

China’s experience reminds us of the need for transparency and accountability when it comes to AI in public services. Systems must be designed and implemented in ways that are inclusive and protect citizens’ digital rights.

The Unexpected
Commentators have often interpreted the State Council’s 2017 Artificial Intelligence Development Plan as an indication that China’s AI mobilization is a top-down, centrally planned strategy.

But a closer look at the dynamics of China’s AI development reveals the importance of local government in implementing innovation policy. Municipal and provincial governments across China are establishing cross-sector partnerships with research institutions and tech companies to create local AI innovation ecosystems and drive rapid research and development.

Beyond the thriving major cities of Beijing, Shanghai, and Shenzhen, efforts to develop successful innovation hubs are also underway in other regions. A promising example is the city of Hangzhou, in Zhejiang Province, which has established an “AI Town,” clustering together the tech company Alibaba, Zhejiang University, and local businesses to work collaboratively on AI development. China’s local ecosystem approach could offer interesting insights to policymakers in the UK aiming to boost research and innovation outside the capital and tackle longstanding regional economic imbalances.

China’s accelerating AI innovation deserves the world’s full attention, but it is unhelpful to reduce all the many developments into a simplistic narrative about China as a threat or a villain. Observers outside China need to engage seriously with the debate and make more of an effort to understand—and learn from—the nuances of what’s really happening.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Dominik Vanyi on Unsplash Continue reading

Posted in Human Robots

#436977 The Top 100 AI Startups Out There Now, ...

New drug therapies for a range of chronic diseases. Defenses against various cyber attacks. Technologies to make cities work smarter. Weather and wildfire forecasts that boost safety and reduce risk. And commercial efforts to monetize so-called deepfakes.

What do all these disparate efforts have in common? They’re some of the solutions that the world’s most promising artificial intelligence startups are pursuing.

Data research firm CB Insights released its much-anticipated fourth annual list of the top 100 AI startups earlier this month. The New York-based company has become one of the go-to sources for emerging technology trends, especially in the startup scene.

About 10 years ago, it developed its own algorithm to assess the health of private companies using publicly-available information and non-traditional signals (think social media sentiment, for example) thanks to more than $1 million in grants from the National Science Foundation.

It uses that algorithm-generated data from what it calls a company’s Mosaic score—pulling together information on market trends, money, and momentum—along with other details ranging from patent activity to the latest news analysis to identify the best of the best.

“Our final list of companies is a mix of startups at various stages of R&D and product commercialization,” said Deepashri Varadharajanis, a lead analyst at CB Insights, during a recent presentation on the most prominent trends among the 2020 AI 100 startups.

About 10 companies on the list are among the world’s most valuable AI startups. For instance, there’s San Francisco-based Faire, which has raised at least $266 million since it was founded just three years ago. The company offers a wholesale marketplace that uses machine learning to match local retailers with goods that are predicted to sell well in their specific location.

Image courtesy of CB Insights
Funding for AI in Healthcare
Another startup valued at more than $1 billion, referred to as a unicorn in venture capital speak, is Butterfly Network, a company on the East Coast that has figured out a way to turn a smartphone phone into an ultrasound machine. Backed by $350 million in private investments, Butterfly Network uses AI to power the platform’s diagnostics. A more modestly funded San Francisco startup called Eko is doing something similar for stethoscopes.

In fact, there are more than a dozen AI healthcare startups on this year’s AI 100 list, representing the most companies of any industry on the list. In total, investors poured about $4 billion into AI healthcare startups last year, according to CB Insights, out of a record $26.6 billion raised by all private AI companies in 2019. Since 2014, more than 4,300 AI startups in 80 countries have raised about $83 billion.

One of the most intensive areas remains drug discovery, where companies unleash algorithms to screen potential drug candidates at an unprecedented speed and breadth that was impossible just a few years ago. It has led to the discovery of a new antibiotic to fight superbugs. There’s even a chance AI could help fight the coronavirus pandemic.

There are several AI drug discovery startups among the AI 100: San Francisco-based Atomwise claims its deep convolutional neural network, AtomNet, screens more than 100 million compounds each day. Cyclica is an AI drug discovery company in Toronto that just announced it would apply its platform to identify and develop novel cannabinoid-inspired drugs for neuropsychiatric conditions such as bipolar disorder and anxiety.

And then there’s OWKIN out of New York City, a startup that uses a type of machine learning called federated learning. Backed by Google, the company’s AI platform helps train algorithms without sharing the necessary patient data required to provide the sort of valuable insights researchers need for designing new drugs or even selecting the right populations for clinical trials.

Keeping Cyber Networks Healthy
Privacy and data security are the focus of a number of AI cybersecurity startups, as hackers attempt to leverage artificial intelligence to launch sophisticated attacks while also trying to fool the AI-powered systems rapidly coming online.

“I think this is an interesting field because it’s a bit of a cat and mouse game,” noted Varadharajanis. “As your cyber defenses get smarter, your cyber attacks get even smarter, and so it’s a constant game of who’s going to match the other in terms of tech capabilities.”

Few AI cybersecurity startups match Silicon Valley-based SentinelOne in terms of private capital. The company has raised more than $400 million, with a valuation of $1.1 billion following a $200 million Series E earlier this year. The company’s platform automates what’s called endpoint security, referring to laptops, phones, and other devices at the “end” of a centralized network.

Fellow AI 100 cybersecurity companies include Blue Hexagon, which protects the “edge” of the network against malware, and Abnormal Security, which stops targeted email attacks, both out of San Francisco. Just down the coast in Los Angeles is Obsidian Security, a startup offering cybersecurity for cloud services.

Deepfakes Get a Friendly Makeover
Deepfakes of videos and other types of AI-manipulated media where faces or voices are synthesized in order to fool viewers or listeners has been a different type of ongoing cybersecurity risk. However, some firms are swapping malicious intent for benign marketing and entertainment purposes.

Now anyone can be a supermodel thanks to Superpersonal, a London-based AI startup that has figured out a way to seamlessly swap a user’s face onto a fashionista modeling the latest threads on the catwalk. The most obvious use case is for shoppers to see how they will look in a particular outfit before taking the plunge on a plunging neckline.

Another British company called Synthesia helps users create videos where a talking head will deliver a customized speech or even talk in a different language. The startup’s claim to fame was releasing a campaign video for the NGO Malaria Must Die showing soccer star David Becham speak in nine different languages.

There’s also a Seattle-based company, Wellsaid Labs, which uses AI to produce voice-over narration where users can choose from a library of digital voices with human pitch, emphasis, and intonation. Because every narrator sounds just a little bit smarter with a British accent.

AI Helps Make Smart Cities Smarter
Speaking of smarter: A handful of AI 100 startups are helping create the smart city of the future, where a digital web of sensors, devices, and cloud-based analytics ensure that nobody is ever stuck in traffic again or without an umbrella at the wrong time. At least that’s the dream.

A couple of them are directly connected to Google subsidiary Sidewalk Labs, which focuses on tech solutions to improve urban design. A company called Replica was spun out just last year. It’s sort of SimCity for urban planning. The San Francisco startup uses location data from mobile phones to understand how people behave and travel throughout a typical day in the city. Those insights can then help city governments, for example, make better decisions about infrastructure development.

Denver-area startup AMP Robotics gets into the nitty gritty details of recycling by training robots on how to recycle trash, since humans have largely failed to do the job. The U.S. Environmental Protection Agency estimates that only about 30 percent of waste is recycled.

Some people might complain that weather forecasters don’t even do that well when trying to predict the weather. An Israeli AI startup, ClimaCell, claims it can forecast rain block by block. While the company taps the usual satellite and ground-based sources to create weather models, it has developed algorithms to analyze how precipitation and other conditions affect signals in cellular networks. By analyzing changes in microwave signals between cellular towers, the platform can predict the type and intensity of the precipitation down to street level.

And those are just some of the highlights of what some of the world’s most promising AI startups are doing.

“You have companies optimizing mining operations, warehouse logistics, insurance, workflows, and even working on bringing AI solutions to designing printed circuit boards,” Varadharajanis said. “So a lot of creative ways in which companies are applying AI to solve different issues in different industries.”

Image Credit: Butterfly Network Continue reading

Posted in Human Robots