Tag Archives: cell

#436504 20 Technology Metatrends That Will ...

In the decade ahead, waves of exponential technological advancements are stacking atop one another, eclipsing decades of breakthroughs in scale and impact.

Emerging from these waves are 20 “metatrends” likely to revolutionize entire industries (old and new), redefine tomorrow’s generation of businesses and contemporary challenges, and transform our livelihoods from the bottom up.

Among these metatrends are augmented human longevity, the surging smart economy, AI-human collaboration, urbanized cellular agriculture, and high-bandwidth brain-computer interfaces, just to name a few.

It is here that master entrepreneurs and their teams must see beyond the immediate implications of a given technology, capturing second-order, Google-sized business opportunities on the horizon.

Welcome to a new decade of runaway technological booms, historic watershed moments, and extraordinary abundance.

Let’s dive in.

20 Metatrends for the 2020s
(1) Continued increase in global abundance: The number of individuals in extreme poverty continues to drop, as the middle-income population continues to rise. This metatrend is driven by the convergence of high-bandwidth and low-cost communication, ubiquitous AI on the cloud, and growing access to AI-aided education and AI-driven healthcare. Everyday goods and services (finance, insurance, education, and entertainment) are being digitized and becoming fully demonetized, available to the rising billion on mobile devices.

(2) Global gigabit connectivity will connect everyone and everything, everywhere, at ultra-low cost: The deployment of both licensed and unlicensed 5G, plus the launch of a multitude of global satellite networks (OneWeb, Starlink, etc.), allow for ubiquitous, low-cost communications for everyone, everywhere, not to mention the connection of trillions of devices. And today’s skyrocketing connectivity is bringing online an additional three billion individuals, driving tens of trillions of dollars into the global economy. This metatrend is driven by the convergence of low-cost space launches, hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(3) The average human healthspan will increase by 10+ years: A dozen game-changing biotech and pharmaceutical solutions (currently in Phase 1, 2, or 3 clinical trials) will reach consumers this decade, adding an additional decade to the human healthspan. Technologies include stem cell supply restoration, wnt pathway manipulation, senolytic medicines, a new generation of endo-vaccines, GDF-11, and supplementation of NMD/NAD+, among several others. And as machine learning continues to mature, AI is set to unleash countless new drug candidates, ready for clinical trials. This metatrend is driven by the convergence of genome sequencing, CRISPR technologies, AI, quantum computing, and cellular medicine.

(4) An age of capital abundance will see increasing access to capital everywhere: From 2016 – 2018 (and likely in 2019), humanity hit all-time highs in the global flow of seed capital, venture capital, and sovereign wealth fund investments. While this trend will witness some ups and downs in the wake of future recessions, it is expected to continue its overall upward trajectory. Capital abundance leads to the funding and testing of ‘crazy’ entrepreneurial ideas, which in turn accelerate innovation. Already, $300 billion in crowdfunding is anticipated by 2025, democratizing capital access for entrepreneurs worldwide. This metatrend is driven by the convergence of global connectivity, dematerialization, demonetization, and democratization.

(5) Augmented reality and the spatial web will achieve ubiquitous deployment: The combination of augmented reality (yielding Web 3.0, or the spatial web) and 5G networks (offering 100Mb/s – 10Gb/s connection speeds) will transform how we live our everyday lives, impacting every industry from retail and advertising to education and entertainment. Consumers will play, learn, and shop throughout the day in a newly intelligent, virtually overlaid world. This metatrend will be driven by the convergence of hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(6) Everything is smart, embedded with intelligence: The price of specialized machine learning chips is dropping rapidly with a rise in global demand. Combined with the explosion of low-cost microscopic sensors and the deployment of high-bandwidth networks, we’re heading into a decade wherein every device becomes intelligent. Your child’s toy remembers her face and name. Your kids’ drone safely and diligently follows and videos all the children at the birthday party. Appliances respond to voice commands and anticipate your needs.

(7) AI will achieve human-level intelligence: As predicted by technologist and futurist Ray Kurzweil, artificial intelligence will reach human-level performance this decade (by 2030). Through the 2020s, AI algorithms and machine learning tools will be increasingly made open source, available on the cloud, allowing any individual with an internet connection to supplement their cognitive ability, augment their problem-solving capacity, and build new ventures at a fraction of the current cost. This metatrend will be driven by the convergence of global high-bandwidth connectivity, neural networks, and cloud computing. Every industry, spanning industrial design, healthcare, education, and entertainment, will be impacted.

(8) AI-human collaboration will skyrocket across all professions: The rise of “AI as a Service” (AIaaS) platforms will enable humans to partner with AI in every aspect of their work, at every level, in every industry. AIs will become entrenched in everyday business operations, serving as cognitive collaborators to employees—supporting creative tasks, generating new ideas, and tackling previously unattainable innovations. In some fields, partnership with AI will even become a requirement. For example: in the future, making certain diagnoses without the consultation of AI may be deemed malpractice.

(9) Most individuals adapt a JARVIS-like “software shell” to improve their quality of life: As services like Alexa, Google Home, and Apple Homepod expand in functionality, such services will eventually travel beyond the home and become your cognitive prosthetic 24/7. Imagine a secure JARVIS-like software shell that you give permission to listen to all your conversations, read your email, monitor your blood chemistry, etc. With access to such data, these AI-enabled software shells will learn your preferences, anticipate your needs and behavior, shop for you, monitor your health, and help you problem-solve in support of your mid- and long-term goals.

(10) Globally abundant, cheap renewable energy: Continued advancements in solar, wind, geothermal, hydroelectric, nuclear, and localized grids will drive humanity towards cheap, abundant, and ubiquitous renewable energy. The price per kilowatt-hour will drop below one cent per kilowatt-hour for renewables, just as storage drops below a mere three cents per kilowatt-hour, resulting in the majority displacement of fossil fuels globally. And as the world’s poorest countries are also the world’s sunniest, the democratization of both new and traditional storage technologies will grant energy abundance to those already bathed in sunlight.

(11) The insurance industry transforms from “recovery after risk” to “prevention of risk”: Today, fire insurance pays you after your house burns down; life insurance pays your next-of-kin after you die; and health insurance (which is really sick insurance) pays only after you get sick. This next decade, a new generation of insurance providers will leverage the convergence of machine learning, ubiquitous sensors, low-cost genome sequencing, and robotics to detect risk, prevent disaster, and guarantee safety before any costs are incurred.

(12) Autonomous vehicles and flying cars will redefine human travel (soon to be far faster and cheaper): Fully autonomous vehicles, car-as-a-service fleets, and aerial ride-sharing (flying cars) will be fully operational in most major metropolitan cities in the coming decade. The cost of transportation will plummet 3-4X, transforming real estate, finance, insurance, the materials economy, and urban planning. Where you live and work, and how you spend your time, will all be fundamentally reshaped by this future of human travel. Your kids and elderly parents will never drive. This metatrend will be driven by the convergence of machine learning, sensors, materials science, battery storage improvements, and ubiquitous gigabit connections.

(13) On-demand production and on-demand delivery will birth an “instant economy of things”: Urban dwellers will learn to expect “instant fulfillment” of their retail orders as drone and robotic last-mile delivery services carry products from local supply depots directly to your doorstep. Further riding the deployment of regional on-demand digital manufacturing (3D printing farms), individualized products can be obtained within hours, anywhere, anytime. This metatrend is driven by the convergence of networks, 3D printing, robotics, and artificial intelligence.

(14) Ability to sense and know anything, anytime, anywhere: We’re rapidly approaching the era wherein 100 billion sensors (the Internet of Everything) is monitoring and sensing (imaging, listening, measuring) every facet of our environments, all the time. Global imaging satellites, drones, autonomous car LIDARs, and forward-looking augmented reality (AR) headset cameras are all part of a global sensor matrix, together allowing us to know anything, anytime, anywhere. This metatrend is driven by the convergence of terrestrial, atmospheric and space-based sensors, vast data networks, and machine learning. In this future, it’s not “what you know,” but rather “the quality of the questions you ask” that will be most important.

(15) Disruption of advertising: As AI becomes increasingly embedded in everyday life, your custom AI will soon understand what you want better than you do. In turn, we will begin to both trust and rely upon our AIs to make most of our buying decisions, turning over shopping to AI-enabled personal assistants. Your AI might make purchases based upon your past desires, current shortages, conversations you’ve allowed your AI to listen to, or by tracking where your pupils focus on a virtual interface (i.e. what catches your attention). As a result, the advertising industry—which normally competes for your attention (whether at the Superbowl or through search engines)—will have a hard time influencing your AI. This metatrend is driven by the convergence of machine learning, sensors, augmented reality, and 5G/networks.

(16) Cellular agriculture moves from the lab into inner cities, providing high-quality protein that is cheaper and healthier: This next decade will witness the birth of the most ethical, nutritious, and environmentally sustainable protein production system devised by humankind. Stem cell-based ‘cellular agriculture’ will allow the production of beef, chicken, and fish anywhere, on-demand, with far higher nutritional content, and a vastly lower environmental footprint than traditional livestock options. This metatrend is enabled by the convergence of biotechnology, materials science, machine learning, and AgTech.

(17) High-bandwidth brain-computer interfaces (BCIs) will come online for public use: Technologist and futurist Ray Kurzweil has predicted that in the mid-2030s, we will begin connecting the human neocortex to the cloud. This next decade will see tremendous progress in that direction, first serving those with spinal cord injuries, whereby patients will regain both sensory capacity and motor control. Yet beyond assisting those with motor function loss, several BCI pioneers are now attempting to supplement their baseline cognitive abilities, a pursuit with the potential to increase their sensorium, memory, and even intelligence. This metatrend is fueled by the convergence of materials science, machine learning, and robotics.

(18) High-resolution VR will transform both retail and real estate shopping: High-resolution, lightweight virtual reality headsets will allow individuals at home to shop for everything from clothing to real estate from the convenience of their living room. Need a new outfit? Your AI knows your detailed body measurements and can whip up a fashion show featuring your avatar wearing the latest 20 designs on a runway. Want to see how your furniture might look inside a house you’re viewing online? No problem! Your AI can populate the property with your virtualized inventory and give you a guided tour. This metatrend is enabled by the convergence of: VR, machine learning, and high-bandwidth networks.

(19) Increased focus on sustainability and the environment: An increase in global environmental awareness and concern over global warming will drive companies to invest in sustainability, both from a necessity standpoint and for marketing purposes. Breakthroughs in materials science, enabled by AI, will allow companies to drive tremendous reductions in waste and environmental contamination. One company’s waste will become another company’s profit center. This metatrend is enabled by the convergence of materials science, artificial intelligence, and broadband networks.

(20) CRISPR and gene therapies will minimize disease: A vast range of infectious diseases, ranging from AIDS to Ebola, are now curable. In addition, gene-editing technologies continue to advance in precision and ease of use, allowing families to treat and ultimately cure hundreds of inheritable genetic diseases. This metatrend is driven by the convergence of various biotechnologies (CRISPR, gene therapy), genome sequencing, and artificial intelligence.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots

#436155 This MIT Robot Wants to Use Your ...

MIT researchers have demonstrated a new kind of teleoperation system that allows a two-legged robot to “borrow” a human operator’s physical skills to move with greater agility. The system works a bit like those haptic suits from the Spielberg movie “Ready Player One.” But while the suits in the film were used to connect humans to their VR avatars, the MIT suit connects the operator to a real robot.

The robot is called Little HERMES, and it’s currently just a pair of little legs, about a third the size of an average adult. It can step and jump in place or walk a short distance while supported by a gantry. While that in itself is not very impressive, the researchers say their approach could help bring capable disaster robots closer to reality. They explain that, despite recent advances, building fully autonomous robots with motor and decision-making skills comparable to those of humans remains a challenge. That’s where a more advanced teleoperation system could help.

The researchers, João Ramos, now an assistant professor at the University of Illinois at Urbana-Champaign, and Sangbae Kim, director of MIT’s Biomimetic Robotics Lab, describe the project in this week’s issue of Science Robotics. In the paper, they argue that existing teleoperation systems often can’t effectively match the operator’s motions to that of a robot. In addition, conventional systems provide no physical feedback to the human teleoperator about what the robot is doing. Their new approach addresses these two limitations, and to see how it would work in practice, they built Little HERMES.

Image: Science Robotics

The main components of MIT’s bipedal robot Little HERMES: (A) Custom actuators designed to withstand impact and capable of producing high torque. (B) Lightweight limbs with low inertia and fast leg swing. (C) Impact-robust and lightweight foot sensors with three-axis contact force sensor. (D) Ruggedized IMU to estimates the robot’s torso posture, angular rate, and linear acceleration. (E) Real-time computer sbRIO 9606 from National Instruments for robot control. (F) Two three-cell lithium-polymer batteries in series. (G) Rigid and lightweight frame to minimize the robot mass.

Early this year, the MIT researchers wrote an in-depth article for IEEE Spectrum about the project, which includes Little HERMES and also its big brother, HERMES (for Highly Efficient Robotic Mechanisms and Electromechanical System). In that article, they describe the two main components of the system:

[…] We are building a telerobotic system that has two parts: a humanoid capable of nimble, dynamic behaviors, and a new kind of two-way human-machine interface that sends your motions to the robot and the robot’s motions to you. So if the robot steps on debris and starts to lose its balance, the operator feels the same instability and instinctively reacts to avoid falling. We then capture that physical response and send it back to the robot, which helps it avoid falling, too. Through this human-robot link, the robot can harness the operator’s innate motor skills and split-second reflexes to keep its footing.

You could say we’re putting a human brain inside the machine.

Image: Science Robotics

The human-machine interface built by the MIT researchers for controlling Little HERMES is different from conventional ones in that it relies on the operator’s reflexes to improve the robot’s stability. The researchers call it the balance-feedback interface, or BFI. The main modules of the BFI include: (A) Custom interface attachments for torso and feet designed to capture human motion data at high speed (1 kHz). (B) Two underactuated modules to track the position and orientation of the torso and apply forces to the operator. (C) Each actuation module has three DoFs, one of which is a push/pull rod actuated by a DC brushless motor. (D) A series of linkages with passive joints connected to the operator’s feet and track their spatial translation. (E) Real-time controller cRIO 9082 from National Instruments to close the BFI control loop. (F) Force plate to estimated the operator’s center of pressure position and measure the shear and normal components of the operator’s net contact force.

Here’s more footage of the experiments, showing Little HERMES stepping and jumping in place, walking a few steps forward and backward, and balancing. Watch until the end to see a compilation of unsuccessful stepping experiments. Poor Little HERMES!

In the new Science Robotics paper, the MIT researchers explain how they solved one of the key challenges in making their teleoperation system effective:

The challenge of this strategy lies in properly mapping human body motion to the machine while simultaneously informing the operator how closely the robot is reproducing the movement. Therefore, we propose a solution for this bilateral feedback policy to control a bipedal robot to take steps, jump, and walk in synchrony with a human operator. Such dynamic synchronization was achieved by (i) scaling the core components of human locomotion data to robot proportions in real time and (ii) applying feedback forces to the operator that are proportional to the relative velocity between human and robot.

Little HERMES is now taking its first steps, quite literally, but the researchers say they hope to use robotic legs with similar design as part of a more advanced humanoid. One possibility they’ve envisioned is a fast-moving quadruped robot that could run through various kinds of terrain and then transform into a bipedal robot that would use its hands to perform dexterous manipulations. This could involve merging some of the robots the MIT researchers have built in their lab, possibly creating hybrids between Cheetah and HERMES, or Mini Cheetah and Little HERMES. We can’t wait to see what the resulting robots will look like.

[ Science Robotics ] Continue reading

Posted in Human Robots

#435793 Tiny Robots Carry Stem Cells Through a ...

Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper published today in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.

Under a rotating magnetic field, the microrobots moved with rolling and corkscrew-style locomotion. The researchers, led by Hongsoo Choi and his team at the Daegu Gyeongbuk Institute of Science & Technology (DGIST), in South Korea, also demonstrated their bot’s moves in slices of mouse brain, in blood vessels isolated from rat brains, and in a multi-organ-on-a chip.

The invention provides an alternative way to deliver stem cells, which are increasingly important in medicine. Such cells can be coaxed into becoming nearly any kind of cell, making them great candidates for treating neurodegenerative disorders such as Alzheimer’s.

But delivering stem cells typically requires an injection with a needle, which lowers the survival rate of the stem cells, and limits their reach in the body. Microrobots, however, have the potential to deliver stem cells to precise, hard-to-reach areas, with less damage to surrounding tissue, and better survival rates, says Jin-young Kim, a principle investigator at DGIST-ETH Microrobotics Research Center, and an author on the paper.

The virtues of microrobots have inspired several research groups to propose and test different designs in simple conditions, such as microfluidic channels and other static environments. A group out of Hong Kong last year described a burr-shaped bot that carried cells through live, transparent zebrafish.

The new research presents a magnetically-actuated microrobot that successfully carried stem cells through a live mouse. In additional experiments, the cells, which had differentiated into brain cells such as astrocytes, oligodendrocytes, and neurons, transferred to microtissues on the multi-organ-on-a-chip. Taken together, the proof-of-concept experiments demonstrate the potential for microrobots to be used in human stem cell therapy, says Kim.

The team fabricated the robots with 3D laser lithography, and designed them in two shapes: spherical and helical. Using a rotating magnetic field, the scientists navigated the spherical-shaped bots with a rolling motion, and the helical bots with a corkscrew motion. These styles of locomotion proved more efficient than that from a simple pulling force, and were more suitable for use in biological fluids, the scientists reported.

The big challenge in navigating microbots in a live animal (or human body) is being able to see them in real time. Imaging with fMRI doesn’t work, because the magnetic fields interfere with the system. “To precisely control microbots in vivo, it is important to actually see them as they move,” the authors wrote in their paper.

That wasn’t possible during experiments in a live mouse, so the researchers had to check the location of the microrobots before and after the experiments using an optical tomography system called IVIS. They also had to resort to using a pulling force with a permanent magnet to navigate the microrobots inside the mouse, due to the limitations of the IVIS system.

Kim says he and his colleagues are developing imaging systems that will enable them to view in real time the locomotion of their microrobots in live animals. Continue reading

Posted in Human Robots

#435626 Video Friday: Watch Robots Make a Crepe ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. Every week, we also post a calendar of upcoming robotics events; here's what we have so far (send us your events!):

Robotronica – August 18, 2019 – Brisbane, Australia
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi
Humanoids 2019 – October 15-17, 2019 – Toronto
ARSO 2019 – October 31-November 2, 2019 – Beijing
ROSCon 2019 – October 31-November 1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.

Team CoSTAR (JPL, MIT, Caltech, KAIST, LTU) has one of the more diverse teams of robots that we’ve seen:

[ Team CoSTAR ]

A team from Carnegie Mellon University and Oregon State University is sending ground and aerial autonomous robots into a Pittsburgh-area mine to prepare for this month’s DARPA Subterranean Challenge.

“Look at that fire extinguisher, what a beauty!” Expect to hear a lot more of that kind of weirdness during SubT.

[ CMU ]

Unitree Robotics is starting to batch-manufacture Laikago Pro quadrupeds, and if you buy four of them, they can carry you around in a chair!

I’m also really liking these videos from companies that are like, “We have a whole bunch of robot dogs now—what weird stuff can we do with them?”

[ Unitree Robotics ]

Why take a handful of pills every day for all the stuff that's wrong with you, when you could take one custom pill instead? Because custom pills are time-consuming to make, that’s why. But robots don’t care!

Multiply Labs’ factory is designed to operate in parallel. All the filling robots and all the quality-control robots are operating at the same time. The robotic arm, in the meanwhile, shuttles dozens of trays up and down the production floor, making sure that each capsule is filled with the right drugs. The manufacturing cell shown in this article can produce 10,000 personalized capsules in an 8-hour shift. A single cell occupies just 128 square feet (12 square meters) on the production floor. This means that a regular production facility (~10,000 square feet, or 929 m2 ) can house 78 cells, for an overall output of 780,000 capsules per shift. This exceeds the output of most traditional manufacturers—while producing unique personalized capsules!

[ Multiply Labs ]

Thanks Fred!

If you’re getting tired of all those annoying drones that sound like giant bees, just have a listen to this turbine-powered one:

[ Malloy Aeronautics ]

In retrospect, it’s kind of amazing that nobody has bothered to put a functional robotic dog head on a quadruped robot before this, right?

Equipped with sensors, high-tech radar imaging, cameras and a directional microphone, this 100-pound (45-kilogram) super-robot is still a “puppy-in-training.” Just like a regular dog, he responds to commands such as “sit,” “stand,” and “lie down.” Eventually, he will be able to understand and respond to hand signals, detect different colors, comprehend many languages, coordinate his efforts with drones, distinguish human faces, and even recognize other dogs.

As an information scout, Astro’s key missions will include detecting guns, explosives and gun residue to assist police, the military, and security personnel. This robodog’s talents won’t just end there, he also can be programmed to assist as a service dog for the visually impaired or to provide medical diagnostic monitoring. The MPCR team also is training Astro to serve as a first responder for search-and-rescue missions such as hurricane reconnaissance as well as military maneuvers.

[ FAU ]

And now this amazing video, “The Coke Thief,” from ICRA 2005 (!):

[ Paper ]

CYBATHLON Series put the focus on one or two of the six disciplines and are organized in cooperation with international universities and partners. The CYBATHLON Arm and Leg Prosthesis Series took place in Karlsruhe, Germany, from 16 to 18 May and was organized in cooperation with the Karlsruhe Institute of Technology (KIT) and the trade fair REHAB Karlsruhe.

The CYBATHLON Wheelchair Series took place in Kawasaki, Japan on 5 May 2019 and was organized in cooperation with the CYBATHLON Wheelchair Series Japan Organizing Committee and supported by the Swiss Embassy.

[ Cybathlon ]

Rainbow crepe robot!

There’s also this other robot, which I assume does something besides what's in the video, because otherwise it appears to be a massively overengineered way of shaping cooked rice into a chubby triangle.

[ PC Watch ]

The Weaponized Plastic Fighting League at Fetch Robotics has had another season of shardation, deintegration, explodification, and other -tions. Here are a couple fan favorite match videos:

[ Fetch Robotics ]

This video is in German, but it’s worth watching for the three seconds of extremely satisfying footage showing a robot twisting dough into pretzels.

[ Festo ]

Putting brains into farming equipment is a no-brainer, since it’s a semi-structured environment that's generally clear of wayward humans driving other vehicles.

[ Lovol ]

Thanks Fan!

Watch some robots assemble suspiciously Lego-like (but definitely not actually Lego) minifigs.

[ DevLinks ]

The Robotics Innovation Facility (RIFBristol) helps businesses, entrepreneurs, researchers and public sector bodies to embrace the concept of ‘Industry 4.0'. From training your staff in robotics, and demonstrating how automation can improve your manufacturing processes, to prototyping and validating your new innovations—we can provide the support you need.

[ RIF ]

Ryan Gariepy from Clearpath Robotics (and a bunch of other stuff) gave a talk at ICRA with the title of “Move Fast and (Don’t) Break Things: Commercializing Robotics at the Speed of Venture Capital,” which is more interesting when you know that this year’s theme was “Notable Failures.”

[ Clearpath Robotics ]

In this week’s episode of Robots in Depth, Per interviews Michael Nielsen, a computer vision researcher at the Danish Technological Institute.

Michael worked with a fusion of sensors like stereo vision, thermography, radar, lidar and high-frame-rate cameras, merging multiple images for high dynamic range. All this, to be able to navigate the tricky situation in a farm field where you need to navigate close to or even in what is grown. Multibaseline cameras were also used to provide range detection over a wide range of distances.

We also learn about how he expanded his work into sorting recycling, a very challenging problem. We also hear about the problems faced when using time of flight and sheet of light cameras. He then shares some good results using stereo vision, especially combined with blue light random dot projectors.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435593 AI at the Speed of Light

Neural networks shine for solving tough problems such as facial and voice recognition, but conventional electronic versions are limited in speed and hungry for power. In theory, optics could beat digital electronic computers in the matrix calculations used in neural networks. However, optics had been limited by their inability to do some complex calculations that had required electronics. Now new experiments show that all-optical neural networks can tackle those problems.

The key attraction of neural networks is their massive interconnections among processors, comparable to the complex interconnections among neurons in the brain. This lets them perform many operations simultaneously, like the human brain does when looking at faces or listening to speech, making them more efficient for facial and voice recognition than traditional electronic computers that execute one instruction at a time.

Today's electronic neural networks have reached eight million neurons, but their future use in artificial intelligence may be limited by their high power usage and limited parallelism in connections. Optical connections through lenses are inherently parallel. The lens in your eye simultaneously focuses light from across your field of view onto the retina in the back of your eye, where an array of light-detecting nerve cells detects the light. Each cell then relays the signal it receives to neurons in the brain that process the visual signals to show us an image.

Glass lenses process optical signals by focusing light, which performs a complex mathematical operation called a Fourier transform that preserves the information in the original scene but rearranges is completely. One use of Fourier transforms is converting time variations in signal intensity into a plot of the frequencies present in the signal. The military used this trick in the 1950s to convert raw radar return signals recorded by an aircraft in flight into a three-dimensional image of the landscape viewed by the plane. Today that conversion is done electronically, but the vacuum-tube computers of the 1950s were not up to the task.

Development of neural networks for artificial intelligence started with electronics, but their AI applications have been limited by their slow processing and need for extensive computing resources. Some researchers have developed hybrid neural networks, in which optics perform simple linear operations, but electronics perform more complex nonlinear calculations. Now two groups have demonstrated simple all-optical neural networks that do all processing with light.

In May, Wolfram Pernice of the Institute of Physics at the University of Münster in Germany and colleagues reported testing an all-optical “neuron” in which signals change target materials between liquid and solid states, an effect that has been used for optical data storage. They demonstrated nonlinear processing, and produced output pulses like those from organic neurons. They then produced an integrated photonic circuit that incorporated four optical neurons operating at different wavelengths, each of which connected to 15 optical synapses. The photonic circuit contained more than 140 components and could recognize simple optical patterns. The group wrote that their device is scalable, and that the technology promises “access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data.”

Now a group at the Hong Kong University of Science and Technology reports in Optica that they have made an all-optical neural network based on a different process, electromagnetically induced transparency, in which incident light affects how atoms shift between quantum-mechanical energy levels. The process is nonlinear and can be triggered by very weak light signals, says Shengwang Du, a physics professor and coauthor of the paper.

In their demonstration, they illuminated rubidium-85 atoms cooled by lasers to about 10 microKelvin (10 microdegrees above absolute zero). Although the technique may seem unusually complex, Du said the system was the most accessible one in the lab that could produce the desired effects. “As a pure quantum atomic system [it] is ideal for this proof-of-principle experiment,” he says.

Next, they plan to scale up the demonstration using a hot atomic vapor center, which is less expensive, does not require time-consuming preparation of cold atoms, and can be integrated with photonic chips. Du says the major challenges are reducing cost of the nonlinear processing medium and increasing the scale of the all-optical neural network for more complex tasks.

“Their demonstration seems valid,” says Volker Sorger, an electrical engineer at George Washington University in Washington who was not involved in either demonstration. He says the all-optical approach is attractive because it offers very high parallelism, but the update rate is limited to about 100 hertz because of the liquid crystals used in their test, and he is not completely convinced their approach can be scaled error-free. Continue reading

Posted in Human Robots