Tag Archives: big

#431081 How the Intelligent Home of the Future ...

As Dorothy famously said in The Wizard of Oz, there’s no place like home. Home is where we go to rest and recharge. It’s familiar, comfortable, and our own. We take care of our homes by cleaning and maintaining them, and fixing things that break or go wrong.
What if our homes, on top of giving us shelter, could also take care of us in return?
According to Chris Arkenberg, this could be the case in the not-so-distant future. As part of Singularity University’s Experts On Air series, Arkenberg gave a talk called “How the Intelligent Home of The Future Will Care For You.”
Arkenberg is a research and strategy lead at Orange Silicon Valley, and was previously a research fellow at the Deloitte Center for the Edge and a visiting researcher at the Institute for the Future.
Arkenberg told the audience that there’s an evolution going on: homes are going from being smart to being connected, and will ultimately become intelligent.
Market Trends
Intelligent home technologies are just now budding, but broader trends point to huge potential for their growth. We as consumers already expect continuous connectivity wherever we go—what do you mean my phone won’t get reception in the middle of Yosemite? What do you mean the smart TV is down and I can’t stream Game of Thrones?
As connectivity has evolved from a privilege to a basic expectation, Arkenberg said, we’re also starting to have a better sense of what it means to give up our data in exchange for services and conveniences. It’s so easy to click a few buttons on Amazon and have stuff show up at your front door a few days later—never mind that data about your purchases gets recorded and aggregated.
“Right now we have single devices that are connected,” Arkenberg said. “Companies are still trying to show what the true value is and how durable it is beyond the hype.”

Connectivity is the basis of an intelligent home. To take a dumb object and make it smart, you get it online. Belkin’s Wemo, for example, lets users control lights and appliances wirelessly and remotely, and can be paired with Amazon Echo or Google Home for voice-activated control.
Speaking of voice-activated control, Arkenberg pointed out that physical interfaces are evolving, too, to the point that we’re actually getting rid of interfaces entirely, or transitioning to ‘soft’ interfaces like voice or gesture.
Drivers of change
Consumers are open to smart home tech and companies are working to provide it. But what are the drivers making this tech practical and affordable? Arkenberg said there are three big ones:
Computation: Computers have gotten exponentially more powerful over the past few decades. If it wasn’t for processors that could handle massive quantities of information, nothing resembling an Echo or Alexa would even be possible. Artificial intelligence and machine learning are powering these devices, and they hinge on computing power too.
Sensors: “There are more things connected now than there are people on the planet,” Arkenberg said. Market research firm Gartner estimates there are 8.4 billion connected things currently in use. Wherever digital can replace hardware, it’s doing so. Cheaper sensors mean we can connect more things, which can then connect to each other.
Data: “Data is the new oil,” Arkenberg said. “The top companies on the planet are all data-driven giants. If data is your business, though, then you need to keep finding new ways to get more and more data.” Home assistants are essentially data collection systems that sit in your living room and collect data about your life. That data in turn sets up the potential of machine learning.
Colonizing the Living Room
Alexa and Echo can turn lights on and off, and Nest can help you be energy-efficient. But beyond these, what does an intelligent home really look like?
Arkenberg’s vision of an intelligent home uses sensing, data, connectivity, and modeling to manage resource efficiency, security, productivity, and wellness.
Autonomous vehicles provide an interesting comparison: they’re surrounded by sensors that are constantly mapping the world to build dynamic models to understand the change around itself, and thereby predict things. Might we want this to become a model for our homes, too? By making them smart and connecting them, Arkenberg said, they’d become “more biological.”
There are already several products on the market that fit this description. RainMachine uses weather forecasts to adjust home landscape watering schedules. Neurio monitors energy usage, identifies areas where waste is happening, and makes recommendations for improvement.
These are small steps in connecting our homes with knowledge systems and giving them the ability to understand and act on that knowledge.
He sees the homes of the future being equipped with digital ears (in the form of home assistants, sensors, and monitoring devices) and digital eyes (in the form of facial recognition technology and machine vision to recognize who’s in the home). “These systems are increasingly able to interrogate emotions and understand how people are feeling,” he said. “When you push more of this active intelligence into things, the need for us to directly interface with them becomes less relevant.”
Could our homes use these same tools to benefit our health and wellness? FREDsense uses bacteria to create electrochemical sensors that can be applied to home water systems to detect contaminants. If that’s not personal enough for you, get a load of this: ClinicAI can be installed in your toilet bowl to monitor and evaluate your biowaste. What’s the point, you ask? Early detection of colon cancer and other diseases.
What if one day, your toilet’s biowaste analysis system could link up with your fridge, so that when you opened it it would tell you what to eat, and how much, and at what time of day?
Roadblocks to intelligence
“The connected and intelligent home is still a young category trying to establish value, but the technological requirements are now in place,” Arkenberg said. We’re already used to living in a world of ubiquitous computation and connectivity, and we have entrained expectations about things being connected. For the intelligent home to become a widespread reality, its value needs to be established and its challenges overcome.
One of the biggest challenges will be getting used to the idea of continuous surveillance. We’ll get convenience and functionality if we give up our data, but how far are we willing to go? Establishing security and trust is going to be a big challenge moving forward,” Arkenberg said.
There’s also cost and reliability, interoperability and fragmentation of devices, or conversely, what Arkenberg called ‘platform lock-on,’ where you’d end up relying on only one provider’s system and be unable to integrate devices from other brands.
Ultimately, Arkenberg sees homes being able to learn about us, manage our scheduling and transit, watch our moods and our preferences, and optimize our resource footprint while predicting and anticipating change.
“This is the really fascinating provocation of the intelligent home,” Arkenberg said. “And I think we’re going to start to see this play out over the next few years.”
Sounds like a home Dorothy wouldn’t recognize, in Kansas or anywhere else.
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431000 Japan’s SoftBank Is Investing Billions ...

Remember the 1980s movie Brewster’s Millions, in which a minor league baseball pitcher (played by Richard Pryor) must spend $30 million in 30 days to inherit $300 million? Pryor goes on an epic spending spree for a bigger payoff down the road.
One of the world’s biggest public companies is making that film look like a weekend in the Hamptons. Japan’s SoftBank Group, led by its indefatigable CEO Masayoshi Son, is shooting to invest $100 billion over the next five years toward what the company calls the information revolution.
The newly-created SoftBank Vision Fund, with a handful of key investors, appears ready to almost single-handedly hack the technology revolution. Announced only last year, the fund had its first major close in May with $93 billion in committed capital. The rest of the money is expected to be raised this year.
The fund is unprecedented. Data firm CB Insights notes that the SoftBank Vision Fund, if and when it hits the $100 billion mark, will equal the total amount that VC-backed companies received in all of 2016—$100.8 billion across 8,372 deals globally.
The money will go toward both billion-dollar corporations and startups, with a minimum $100 million buy-in. The focus is on core technologies like artificial intelligence, robotics and the Internet of Things.
Aside from being Japan’s richest man, Son is also a futurist who has predicted the singularity, the moment in time when machines will become smarter than humans and technology will progress exponentially. Son pegs the date as 2047. He appears to be hedging that bet in the biggest way possible.
Show Me the Money
Ostensibly a telecommunications company, SoftBank Group was founded in 1981 and started investing in internet technologies by the mid-1990s. Son infamously lost about $70 billion of his own fortune after the dot-com bubble burst around 2001. The company itself has a market cap of nearly $90 billion today, about half of where it was during the heydays of the internet boom.
The ups and downs did nothing to slake the company’s thirst for technology. It has made nine acquisitions and more than 130 investments since 1995. In 2017 alone, SoftBank has poured billions into nearly 30 companies and acquired three others. Some of those investments are being transferred to the massive SoftBank Vision Fund.
SoftBank is not going it alone with the new fund. More than half of the money—$60 billion—comes via the Middle East through Saudi Arabia’s Public Investment Fund ($45 billion) and Abu Dhabi’s Mubadala Investment Company ($15 billion). Other players at the table include Apple, Qualcomm, Sharp, Foxconn, and Oracle.
During a company conference in August, Son notes the SoftBank Vision Fund is not just about making money. “We don’t just want to be an investor just for the money game,” he says through a translator. “We want to make the information revolution. To do the information revolution, you can’t do it by yourself; you need a lot of synergy.”
Off to the Races
The fund has wasted little time creating that synergy. In July, its first official investment, not surprisingly, went to a company that specializes in artificial intelligence for robots—Brain Corp. The San Diego-based startup uses AI to turn manual machines into self-driving robots that navigate their environments autonomously. The first commercial application appears to be a really smart commercial-grade version that crosses a Roomba and Zamboni.

A second investment in July was a bit more surprising. SoftBank and its fund partners led a $200 million mega-round for Plenty, an agricultural tech company that promises to reshape farming by going vertical. Using IoT sensors and machine learning, Plenty claims its urban vertical farms can produce 350 times more vegetables than a conventional farm using 1 percent of the water.
Round Two
The spending spree continued into August.
The SoftBank Vision Fund led a $1.1 billion investment into a little-known biotechnology company called Roivant Sciences that goes dumpster diving for abandoned drugs and then creates subsidiaries around each therapy. For example, Axovant Sciences is devoted to neurology while Urovant focuses on urology. TechCrunch reports that Roivant is also creating a tech-focused subsidiary, called Datavant, that will use AI for drug discovery and other healthcare initiatives, such as designing clinical trials.
The AI angle may partly explain SoftBank’s interest in backing the biggest private placement in healthcare to date.
Also in August, SoftBank Vision Fund led a mix of $2.5 billion in primary and secondary capital investments into India’s largest private company in what was touted as the largest single investment in a private Indian company. Flipkart is an e-commerce company in the mold of Amazon.
The fund tacked on a $250 million investment round in August to Kabbage, an Atlanta-based startup in the alt-lending sector for small businesses. It ended big with a $4.4 billion investment into a co-working company called WeWork.
Betterment of Humanity
And those investments only include companies that SoftBank Vision Fund has backed directly.
SoftBank the company will offer—or has already turned over—previous investments to the Vision Fund in more than a half-dozen companies. Those assets include its shares in Nvidia, which produces chips for AI applications, and its first serious foray into autonomous driving with Nauto, a California startup that uses AI and high-tech cameras to retrofit vehicles to improve driving safety. The more miles the AI logs, the more it learns about safe and unsafe driving behaviors.
Other recent acquisitions, such as Boston Dynamics, a well-known US robotics company owned briefly by Google’s parent company Alphabet, will remain under the SoftBank Group umbrella for now.

This spending spree begs the question: What is the overall vision behind the SoftBank’s relentless pursuit of technology companies? A spokesperson for SoftBank told Singularity Hub that the “common thread among all of these companies is that they are creating the foundational platforms for the next stage of the information revolution.All of the companies, he adds, share SoftBank’s criteria of working toward “the betterment of humanity.”
While the SoftBank portfolio is diverse, from agtech to fintech to biotech, it’s obvious that SoftBank is betting on technologies that will connect the world in new and amazing ways. For instance, it wrote a $1 billion check last year in support of OneWeb, which aims to launch 900 satellites to bring internet to everyone on the planet. (It will also be turned over to the SoftBank Vision Fund.)
SoftBank also led a half-billion equity investment round earlier this year in a UK company called Improbable, which employs cloud-based distributed computing to create virtual worlds for gaming. The next step for the company is massive simulations of the real world that supports simultaneous users who can experience the same environment together(and another candidate for the SoftBank Vision Fund.)
Even something as seemingly low-tech as WeWork, which provides a desk or office in locations around the world, points toward a more connected planet.
In the end, the singularity is about bringing humanity together through technology. No one said it would be easy—or cheap.
Stock Media provided by xackerz / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430874 12 Companies That Are Making the World a ...

The Singularity University Global Summit in San Francisco this week brought brilliant minds together from all over the world to share a passion for using science and technology to solve the world’s most pressing challenges.
Solving these challenges means ensuring basic needs are met for all people. It means improving quality of life and mitigating future risks both to people and the planet.
To recognize organizations doing outstanding work in these fields, SU holds the Global Grand Challenge Awards. Three participating organizations are selected in each of 12 different tracks and featured at the summit’s EXPO. The ones found to have the most potential to positively impact one billion people are selected as the track winners.
Here’s a list of the companies recognized this year, along with some details about the great work they’re doing.
Global Grand Challenge Awards winners at Singularity University’s Global Summit in San Francisco.
Disaster Resilience
LuminAID makes portable lanterns that can provide 24 hours of light on 10 hours of solar charging. The lanterns came from a project to assist post-earthquake relief efforts in Haiti, when the product’s creators considered the dangerous conditions at night in the tent cities and realized light was a critical need. The lights have been used in more than 100 countries and after disasters, including Hurricane Sandy, Typhoon Haiyan, and the earthquakes in Nepal.

Environment
BreezoMeter uses big data and machine learning to deliver accurate air quality information in real time. Users can see pollution details as localized as a single city block, and data is impacted by real-time traffic. Forecasting is also available, with air pollution information available up to four days ahead of time, or several years in the past.
Food
Aspire Food Group believes insects are the protein of the future, and that technology has the power to bring the tradition of eating insects that exists in many countries and cultures to the rest of the world. The company uses technologies like robotics and automated data collection to farm insects that have the protein quality of meat and the environmental footprint of plants.
Energy
Rafiki Power acts as a rural utility company, building decentralized energy solutions in regions that lack basic services like running water and electricity. The company’s renewable hybrid systems are packed and standardized in recycled 20-foot shipping containers, and they’re currently powering over 700 household and business clients in rural Tanzania.

Governance
MakeSense is an international community that brings together people in 128 cities across the world to help social entrepreneurs solve challenges in areas like education, health, food, and environment. Social entrepreneurs post their projects and submit challenges to the community, then participants organize workshops to mobilize and generate innovative solutions to help the projects grow.
Health
Unima developed a fast and low-cost diagnostic and disease surveillance tool for infectious diseases. The tool allows health professionals to diagnose diseases at the point of care, in less than 15 minutes, without the use of any lab equipment. A drop of the patient’s blood is put on a diagnostic paper, where the antibody generates a visual reaction when in contact with the biomarkers in the sample. The result is evaluated by taking a photo with an app in a smartphone, which uses image processing, artificial intelligence and machine learning.
Prosperity
Egalite helps people with disabilities enter the labor market, and helps companies develop best practices for inclusion of the disabled. Egalite’s founders are passionate about the potential of people with disabilities and the return companies get when they invest in that potential.
Learning
Iris.AI is an artificial intelligence system that reads scientific paper abstracts and extracts key concepts for users, presenting concepts visually and allowing users to navigate a topic across disciplines. Since its launch, Iris.AI has read 30 million research paper abstracts and more than 2,000 TED talks. The AI uses a neural net and deep learning technology to continuously improve its output.
Security
Hala Systems, Inc. is a social enterprise focused on developing technology-driven solutions to the world’s toughest humanitarian challenges. Hala is currently focused on civilian protection, accountability, and the prevention of violent extremism before, during, and after conflict. Ultimately, Hala aims to transform the nature of civilian defense during warfare, as well as to reduce casualties and trauma during post-conflict recovery, natural disasters, and other major crises.
Shelter
Billion Bricks designs and provides shelter and infrastructure solutions for the homeless. The company’s housing solutions are scalable, sustainable, and able to create opportunities for communities to emerge from poverty. Their approach empowers communities to replicate the solutions on their own, reducing dependency on support and creating ownership and pride.

Space
Tellus Labs uses satellite data to tackle challenges like food security, water scarcity, and sustainable urban and industrial systems, and drive meaningful change. The company built a planetary-scale model of all 170 million acres of US corn and soy crops to more accurately forecast yields and help stabilize the market fluctuations that accompany the USDA’s monthly forecasts.
Water
Loowatt designed a toilet that uses a patented sealing technology to contain human waste within biodegradable film. The toilet is designed for linking to anaerobic digestion technology to provide a source of biogas for cooking, electricity, and other applications, creating the opportunity to offset capital costs with energy production.
Image Credit: LuminAID via YouTube Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on 12 Companies That Are Making the World a ...

#430830 Biocomputers Made From Cells Can Now ...

When it comes to biomolecules, RNA doesn’t get a lot of love.
Maybe you haven’t even heard of the silent workhorse. RNA is the cell’s de facto translator: like a game of telephone, RNA takes DNA’s genetic code to a cellular factory called ribosomes. There, the cell makes proteins based on RNA’s message.
But RNA isn’t just a middleman. It controls what proteins are formed. Because proteins wiz around the cell completing all sorts of important processes, you can say that RNA is the gatekeeper: no RNA message, no proteins, no life.
In a new study published in Nature, RNA finally took center stage. By adding bits of genetic material to the E. Coli bacteria, a team of biohackers at the Wyss Institute hijacked the organism’s RNA messengers so that they only spring into action following certain inputs.
The result? A bacterial biocomputer capable of performing 12-input logic operations—AND, OR, and NOT—following specific inputs. Rather than outputting 0s and 1s, these biocircuits produce results based on the presence or absence of proteins and other molecules.
“It’s the greatest number of inputs in a circuit that a cell has been able to process,” says study author Dr. Alexander Green at Arizona State University. “To be able to analyze those signals and make a decision is the big advance here.”
When given a specific set of inputs, the bacteria spit out a protein that made them glow neon green under fluorescent light.
But synthetic biology promises far more than just a party trick—by tinkering with a cell’s RNA repertoire, scientists may one day coax them to photosynthesize, produce expensive drugs on the fly, or diagnose and hunt down rogue tumor cells.
Illustration of an RNA-based ‘ribocomputing’ device that makes logic-based decisions in living cells. The long gate RNA (blue) detects the binding of an input RNA (red). The ribosome (purple/mauve) reads the gate RNA to produce an output protein. Image Credit: Alexander Green / Arizona State University
The software of life
This isn’t the first time that scientists hijacked life’s algorithms to reprogram cells into nanocomputing systems. Previous work has already introduced to the world yeast cells that can make anti-malaria drugs from sugar or mammalian cells that can perform Boolean logic.
Yet circuits with multiple inputs and outputs remain hard to program. The reason is this: synthetic biologists have traditionally focused on snipping, fusing, or otherwise arranging a cell’s DNA to produce the outcomes they want.
But DNA is two steps removed from proteins, and tinkering with life’s code often leads to unexpected consequences. For one, the cell may not even accept and produce the extra bits of DNA code. For another, the added code, when transformed into proteins, may not act accordingly in the crowded and ever-changing environment of the cell.
What’s more, tinkering with one gene is often not enough to program an entirely new circuit. Scientists often need to amp up or shut down the activity of multiple genes, or multiple biological “modules” each made up of tens or hundreds of genes.
It’s like trying to fit new Lego pieces in a specific order into a room full of Lego constructions. Each new piece has the potential to wander off track and click onto something it’s not supposed to touch.
Getting every moving component to work in sync—as you might have guessed—is a giant headache.
The RNA way
With “ribocomputing,” Green and colleagues set off to tackle a main problem in synthetic biology: predictability.
Named after the “R (ribo)” in “RNA,” the method grew out of an idea that first struck Green back in 2012.
“The synthetic biological circuits to date have relied heavily on protein-based regulators that are difficult to scale up,” Green wrote at the time. We only have a limited handful of “designable parts” that work well, and these circuits require significant resources to encode and operate, he explains.
RNA, in comparison, is a lot more predictable. Like its more famous sibling DNA, RNA is composed of units that come in four different flavors: A, G, C, and U. Although RNA is only single-stranded, rather than the double helix for which DNA is known for, it can bind short DNA-like sequences in a very predictable manner: Gs always match up with Cs and As always with Us.
Because of this predictability, it’s possible to design RNA components that bind together perfectly. In other words, it reduces the chance that added RNA bits might go rogue in an unsuspecting cell.
Normally, once RNA is produced it immediately rushes to the ribosome—the cell’s protein-building factory. Think of it as a constantly “on” system.
However, Green and his team found a clever mechanism to slow them down. Dubbed the “toehold switch,” it works like this: the artificial RNA component is first incorporated into a chain of A, G, C, and U folded into a paperclip-like structure.
This blocks the RNA from accessing the ribosome. Because one RNA strand generally maps to one protein, the switch prevents that protein from ever getting made.
In this way, the switch is set to “off” by default—a “NOT” gate, in Boolean logic.
To activate the switch, the cell needs another component: a “trigger RNA,” which binds to the RNA toehold switch. This flips it on: the RNA grabs onto the ribosome, and bam—proteins.
BioLogic gates
String a few RNA switches together, with the activity of each one relying on the one before, and it forms an “AND” gate. Alternatively, if the activity of each switch is independent, that’s an “OR” gate.
“Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications,” says Green. They’re “kind of the equivalent of your first transistors,” he adds.
Once the team optimized the designs for different logic gates, they carefully condensed the switches into “gate RNA” molecules. These gate RNAs contain both codes for proteins and the logic operations needed to kickstart the process—a molecular logic circuit, so to speak.
If you’ve ever played around with an Arduino-controlled electrical circuit, you probably know the easiest way to test its function is with a light bulb.
That’s what the team did here, though with a biological bulb: green fluorescent protein, a light-sensing protein not normally present in bacteria that—when turned on—makes the microbugs glow neon green.
In a series of experiments, Green and his team genetically inserted gate RNAs into bacteria. Then, depending on the type of logical function, they added different combinations of trigger RNAs—the inputs.
When the input RNA matched up with its corresponding gate RNA, it flipped on the switch, causing the cell to light up.

Their most complex circuit contained five AND gates, five OR gates, and two NOTs—a 12-input ribocomputer that functioned exactly as designed.
That’s quite the achievement. “Everything is interacting with everything else and there are a million ways those interactions could flip the switch on accident,” says RNA researcher Dr. Julies Lucks at Northwestern University.
The specificity is thanks to RNA, the authors explain. Because RNAs bind to others so predictably, we can now design massive libraries of gate and trigger units to mix-and-match into all types of nano-biocomputers.
RNA BioNanobots
Although the technology doesn’t have any immediate applications, the team has high hopes.
For the first time, it’s now possible to massively scale up the process of programming new circuits into living cells. We’ve expanded the library of available biocomponents that can be used to reprogram life’s basic code, the authors say.
What’s more, when freeze-dried onto a piece of tissue paper, RNA keeps very well. We could potentially print RNA toehold switches onto paper that respond to viruses or to tumor cells, the authors say, essentially transforming the technology into highly accurate diagnostic platforms.
But Green’s hopes are even wilder for his RNA-based circuits.
“Because we’re using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms,” he says.
Ultimately, the hope is to program neural network-like capabilities into the body’s other cells.
Imagine cells endowed with circuits capable of performing the kinds of computation the brain does, the authors say.
Perhaps one day, synthetic biology will transform our own cells into fully programmable entities, turning us all into biological cyborgs from the inside. How wild would that be?
Image Credit: Wyss Institute at Harvard University Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on Biocomputers Made From Cells Can Now ...

#430801 3 Exponentials to Watch | Future of ...

In the third of Singularity University’s Future of Everything YouTube series with Jason Silva, Silva discusses “The Big Three” exponential technologies, which he defines as GNR: genetics, nanotechnology, and robotics.
“If I were to be talking to entrepreneurs, if I was talking to heads of companies, I would tell them, pay attention to exponentials,” Silva says. “Pay attention to disruptive technologies… These are the forces that are upending the world. These are the trillion-dollar industries that are going to emerge out of no place.”

Image Credit: Shutterstock Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Comments Off on 3 Exponentials to Watch | Future of ...