Tag Archives: better

#438785 Video Friday: A Blimp For Your Cat

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Shiny robotic cat toy blimp!

I am pretty sure this is Google Translate getting things wrong, but the About page mentions that the blimp will “take you to your destination after appearing in the death of God.”

[ NTT DoCoMo ] via [ RobotStart ]

If you have yet to see this real-time video of Perseverance landing on Mars, drop everything and watch it.

During the press conference, someone commented that this is the first time anyone on the team who designed and built this system has ever seen it in operation, since it could only be tested at the component scale on Earth. This landing system has blown my mind since Curiosity.

Here's a better look at where Percy ended up:

[ NASA ]

The fact that Digit can just walk up and down wet, slippery, muddy hills without breaking a sweat is (still) astonishing.

[ Agility Robotics ]

SkyMul wants drones to take over the task of tying rebar, which looks like just the sort of thing we'd rather robots be doing so that we don't have to:

The tech certainly looks promising, and SkyMul says that they're looking for some additional support to bring things to the pilot stage.

[ SkyMul ]

Thanks Eohan!

Flatcat is a pet-like, playful robot that reacts to touch. Flatcat feels everything exactly: Cuddle with it, romp around with it, or just watch it do weird things of its own accord. We are sure that flatcat will amaze you, like us, and caress your soul.

I don't totally understand it, but I want it anyway.

[ Flatcat ]

Thanks Oswald!

This is how I would have a romantic dinner date if I couldn't get together in person. Herman the UR3 and an OptiTrack system let me remotely make a romantic meal!

[ Dave's Armoury ]

Here, we propose a novel design of deformable propellers inspired by dragonfly wings. The structure of these propellers includes a flexible segment similar to the nodus on a dragonfly wing. This flexible segment can bend, twist and even fold upon collision, absorbing force upon impact and protecting the propeller from damage.

[ Paper ]

Thanks Van!

In the 1970s, The CIA​ created the world's first miniaturized unmanned aerial vehicle, or UAV, which was intended to be a clandestine listening device. The Insectothopter was never deployed operationally, but was still revolutionary for its time.

It may never have been deployed (not that they'll admit to, anyway), but it was definitely operational and could fly controllably.

[ CIA ]

Research labs are starting to get Digits, which means we're going to get a much better idea of what its limitations are.

[ Ohio State ]

This video shows the latest achievements for LOLA walking on undetected uneven terrain. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

We define “robotic contact juggling” to be the purposeful control of the motion of a three-dimensional smooth object as it rolls freely on a motion-controlled robot manipulator, or “hand.” While specific examples of robotic contact juggling have been studied before, in this paper we provide the first general formulation and solution method for the case of an arbitrary smooth object in single-point rolling contact on an arbitrary smooth hand.

[ Paper ]

Thanks Fan!

A couple of new cobots from ABB, designed to work safely around humans.

[ ABB ]

Thanks Fan!

It's worth watching at least a little bit of Adam Savage testing Spot's new arm, because we get to see Spot try, fail, and eventually succeed at an autonomous door-opening behavior at the 10 minute mark.

[ Tested ]

SVR discusses diversity with guest speakers Dr. Michelle Johnson from the GRASP Lab at UPenn; Dr Ariel Anders from Women in Robotics and first technical hire at Robust.ai; Alka Roy from The Responsible Innovation Project; and Kenechukwu C. Mbanesi and Kenya Andrews from Black in Robotics. The discussion here is moderated by Dr. Ken Goldberg—artist, roboticist and Director of the CITRIS People and Robots Lab—and Andra Keay from Silicon Valley Robotics.

[ SVR ]

RAS presents a Soft Robotics Debate on Bioinspired vs. Biohybrid Design.

In this debate, we will bring together experts in Bioinspiration and Biohybrid design to discuss the necessary steps to make more competent soft robots. We will try to answer whether bioinspired research should focus more on developing new bioinspired material and structures or on the integration of living and artificial structures in biohybrid designs.

[ RAS SoRo ]

IFRR presents a Colloquium on Human Robot Interaction.

Across many application domains, robots are expected to work in human environments, side by side with people. The users will vary substantially in background, training, physical and cognitive abilities, and readiness to adopt technology. Robotic products are expected to not only be intuitive, easy to use, and responsive to the needs and states of their users, but they must also be designed with these differences in mind, making human-robot interaction (HRI) a key area of research.

[ IFRR ]

Vijay Kumar, Nemirovsky Family Dean and Professor at Penn Engineering, gives an introduction to ENIAC day and David Patterson, Pardee Professor of Computer Science, Emeritus at the University of California at Berkeley, speaks about the legacy of the ENIAC and its impact on computer architecture today. This video is comprised of lectures one and two of nine total lectures in the ENIAC Day series.

There are more interesting ENIAC videos at the link below, but we'll highlight this particular one, about the women of the ENIAC, also known as the First Programmers.

[ ENIAC Day ] Continue reading

Posted in Human Robots

#438779 Meet Catfish Charlie, the CIA’s ...

Photo: CIA Museum

CIA roboticists designed Catfish Charlie to take water samples undetected. Why they wanted a spy fish for such a purpose remains classified.

In 1961, Tom Rogers of the Leo Burnett Agency created Charlie the Tuna, a jive-talking cartoon mascot and spokesfish for the StarKist brand. The popular ad campaign ran for several decades, and its catchphrase “Sorry, Charlie” quickly hooked itself in the American lexicon.

When the CIA’s Office of Advanced Technologies and Programs started conducting some fish-focused research in the 1990s, Charlie must have seemed like the perfect code name. Except that the CIA’s Charlie was a catfish. And it was a robot.

More precisely, Charlie was an unmanned underwater vehicle (UUV) designed to surreptitiously collect water samples. Its handler controlled the fish via a line-of-sight radio handset. Not much has been revealed about the fish’s construction except that its body contained a pressure hull, ballast system, and communications system, while its tail housed the propulsion. At 61 centimeters long, Charlie wouldn’t set any biggest-fish records. (Some species of catfish can grow to 2 meters.) Whether Charlie reeled in any useful intel is unknown, as details of its missions are still classified.

For exploring watery environments, nothing beats a robot
The CIA was far from alone in its pursuit of UUVs nor was it the first agency to do so. In the United States, such research began in earnest in the 1950s, with the U.S. Navy’s funding of technology for deep-sea rescue and salvage operations. Other projects looked at sea drones for surveillance and scientific data collection.

Aaron Marburg, a principal electrical and computer engineer who works on UUVs at the University of Washington’s Applied Physics Laboratory, notes that the world’s oceans are largely off-limits to crewed vessels. “The nature of the oceans is that we can only go there with robots,” he told me in a recent Zoom call. To explore those uncharted regions, he said, “we are forced to solve the technical problems and make the robots work.”

Image: Thomas Wells/Applied Physics Laboratory/University of Washington

An oil painting commemorates SPURV, a series of underwater research robots built by the University of Washington’s Applied Physics Lab. In nearly 400 deployments, no SPURVs were lost.

One of the earliest UUVs happens to sit in the hall outside Marburg’s office: the Self-Propelled Underwater Research Vehicle, or SPURV, developed at the applied physics lab beginning in the late ’50s. SPURV’s original purpose was to gather data on the physical properties of the sea, in particular temperature and sound velocity. Unlike Charlie, with its fishy exterior, SPURV had a utilitarian torpedo shape that was more in line with its mission. Just over 3 meters long, it could dive to 3,600 meters, had a top speed of 2.5 m/s, and operated for 5.5 hours on a battery pack. Data was recorded to magnetic tape and later transferred to a photosensitive paper strip recorder or other computer-compatible media and then plotted using an IBM 1130.

Over time, SPURV’s instrumentation grew more capable, and the scope of the project expanded. In one study, for example, SPURV carried a fluorometer to measure the dispersion of dye in the water, to support wake studies. The project was so successful that additional SPURVs were developed, eventually completing nearly 400 missions by the time it ended in 1979.

Working on underwater robots, Marburg says, means balancing technical risks and mission objectives against constraints on funding and other resources. Support for purely speculative research in this area is rare. The goal, then, is to build UUVs that are simple, effective, and reliable. “No one wants to write a report to their funders saying, ‘Sorry, the batteries died, and we lost our million-dollar robot fish in a current,’ ” Marburg says.

A robot fish called SoFi
Since SPURV, there have been many other unmanned underwater vehicles, of various shapes and sizes and for various missions, developed in the United States and elsewhere. UUVs and their autonomous cousins, AUVs, are now routinely used for scientific research, education, and surveillance.

At least a few of these robots have been fish-inspired. In the mid-1990s, for instance, engineers at MIT worked on a RoboTuna, also nicknamed Charlie. Modeled loosely on a blue-fin tuna, it had a propulsion system that mimicked the tail fin of a real fish. This was a big departure from the screws or propellers used on UUVs like SPURV. But this Charlie never swam on its own; it was always tethered to a bank of instruments. The MIT group’s next effort, a RoboPike called Wanda, overcame this limitation and swam freely, but never learned to avoid running into the sides of its tank.

Fast-forward 25 years, and a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled SoFi, a decidedly more fishy robot designed to swim next to real fish without disturbing them. Controlled by a retrofitted Super Nintendo handset, SoFi could dive more than 15 meters, control its own buoyancy, and swim around for up to 40 minutes between battery charges. Noting that SoFi’s creators tested their robot fish in the gorgeous waters off Fiji, IEEE Spectrum’s Evan Ackerman noted, “Part of me is convinced that roboticists take on projects like these…because it’s a great way to justify a trip somewhere exotic.”

SoFi, Wanda, and both Charlies are all examples of biomimetics, a term coined in 1974 to describe the study of biological mechanisms, processes, structures, and substances. Biomimetics looks to nature to inspire design.

Sometimes, the resulting technology proves to be more efficient than its natural counterpart, as Richard James Clapham discovered while researching robotic fish for his Ph.D. at the University of Essex, in England. Under the supervision of robotics expert Huosheng Hu, Clapham studied the swimming motion of Cyprinus carpio, the common carp. He then developed four robots that incorporated carplike swimming, the most capable of which was iSplash-II. When tested under ideal conditions—that is, a tank 5 meters long, 2 meters wide, and 1.5 meters deep—iSpash-II obtained a maximum velocity of 11.6 body lengths per second (or about 3.7 m/s). That’s faster than a real carp, which averages a top velocity of 10 body lengths per second. But iSplash-II fell short of the peak performance of a fish darting quickly to avoid a predator.

Of course, swimming in a test pool or placid lake is one thing; surviving the rough and tumble of a breaking wave is another matter. The latter is something that roboticist Kathryn Daltorio has explored in depth.

Daltorio, an assistant professor at Case Western Reserve University and codirector of the Center for Biologically Inspired Robotics Research there, has studied the movements of cockroaches, earthworms, and crabs for clues on how to build better robots. After watching a crab navigate from the sandy beach to shallow water without being thrown off course by a wave, she was inspired to create an amphibious robot with tapered, curved feet that could dig into the sand. This design allowed her robot to withstand forces up to 138 percent of its body weight.

Photo: Nicole Graf

This robotic crab created by Case Western’s Kathryn Daltorio imitates how real crabs grab the sand to avoid being toppled by waves.

In her designs, Daltorio is following architect Louis Sullivan’s famous maxim: Form follows function. She isn’t trying to imitate the aesthetics of nature—her robot bears only a passing resemblance to a crab—but rather the best functionality. She looks at how animals interact with their environments and steals evolution’s best ideas.

And yet, Daltorio admits, there is also a place for realistic-looking robotic fish, because they can capture the imagination and spark interest in robotics as well as nature. And unlike a hyperrealistic humanoid, a robotic fish is unlikely to fall into the creepiness of the uncanny valley.

In writing this column, I was delighted to come across plenty of recent examples of such robotic fish. Ryomei Engineering, a subsidiary of Mitsubishi Heavy Industries, has developed several: a robo-coelacanth, a robotic gold koi, and a robotic carp. The coelacanth was designed as an educational tool for aquariums, to present a lifelike specimen of a rarely seen fish that is often only known by its fossil record. Meanwhile, engineers at the University of Kitakyushu in Japan created Tai-robot-kun, a credible-looking sea bream. And a team at Evologics, based in Berlin, came up with the BOSS manta ray.

Whatever their official purpose, these nature-inspired robocreatures can inspire us in return. UUVs that open up new and wondrous vistas on the world’s oceans can extend humankind’s ability to explore. We create them, and they enhance us, and that strikes me as a very fair and worthy exchange.

This article appears in the March 2021 print issue as “Catfish, Robot, Swimmer, Spy.”

About the Author
Allison Marsh is an associate professor of history at the University of South Carolina and codirector of the university’s Ann Johnson Institute for Science, Technology & Society. Continue reading

Posted in Human Robots

#438762 When Robots Enter the World, Who Is ...

Over the last half decade or so, the commercialization of autonomous robots that can operate outside of structured environments has dramatically increased. But this relatively new transition of robotic technologies from research projects to commercial products comes with its share of challenges, many of which relate to the rapidly increasing visibility that these robots have in society.

Whether it's because of their appearance of agency, or because of their history in popular culture, robots frequently inspire people’s imagination. Sometimes this is a good thing, like when it leads to innovative new use cases. And sometimes this is a bad thing, like when it leads to use cases that could be classified as irresponsible or unethical. Can the people selling robots do anything about the latter? And even if they can, should they?

Roboticists understand that robots, fundamentally, are tools. We build them, we program them, and even the autonomous ones are just following the instructions that we’ve coded into them. However, that same appearance of agency that makes robots so compelling means that it may not be clear to people without much experience with or exposure to real robots that a robot itself isn’t inherently good or bad—rather, as a tool, a robot is a reflection of its designers and users.

This can put robotics companies into a difficult position. When they sell a robot to someone, that person can, hypothetically, use the robot in any way they want. Of course, this is the case with every tool, but it’s the autonomous aspect that makes robots unique. I would argue that autonomy brings with it an implied association between a robot and its maker, or in this case, the company that develops and sells it. I’m not saying that this association is necessarily a reasonable one, but I think that it exists, even if that robot has been sold to someone else who has assumed full control over everything it does.

“All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon”
—Robert Playter, Boston Dynamics

Robotics companies are certainly aware of this, because many of them are very careful about who they sell their robots to, and very explicit about what they want their robots to be doing. But once a robot is out in the wild, as it were, how far should that responsibility extend? And realistically, how far can it extend? Should robotics companies be held accountable for what their robots do in the world, or should we accept that once a robot is sold to someone else, responsibility is transferred as well? And what can be done if a robot is being used in an irresponsible or unethical way that could have a negative impact on the robotics community?

For perspective on this, we contacted folks from three different robotics companies, each of which has experience selling distinctive mobile robots to commercial end users. We asked them the same five questions about the responsibility that robotics companies have regarding the robots that they sell, and here’s what they had to say:

Do you have any restrictions on what people can do with your robots? If so, what are they, and if not, why not?

Péter Fankhauser, CEO, ANYbotics:

We closely work together with our customers to make sure that our solution provides the right approach for their problem. Thereby, the target use case is clear from the beginning and we do not work with customers interested in using our robot ANYmal outside the intended target applications. Specifically, we strictly exclude any military or weaponized uses and since the foundation of ANYbotics it is close to our heart to make human work easier, safer, and more enjoyable.

Robert Playter, CEO, Boston Dynamics:

Yes, we have restrictions on what people can do with our robots, which are outlined in our Terms and Conditions of Sale. All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon. Spot, just like any product, must be used in compliance with the law.

Ryan Gariepy, CTO, Clearpath Robotics:

We do have strict restrictions and KYC processes which are based primarily on Canadian export control regulations. They depend on the type of equipment sold as well as where it is going. More generally, we also will not sell or support a robot if we know that it will create an uncontrolled safety hazard or if we have reason to believe that the buyer is unqualified to use the product. And, as always, we do not support using our products for the development of fully autonomous weapons systems.

More broadly, if you sell someone a robot, why should they be restricted in what they can do with it?
Péter Fankhauser, ANYbotics: We see the robot less as a simple object but more as an artificial workforce. This implies to us that the usage is closely coupled with the transfer of the robot and both the customer and the provider agree what the robot is expected to do. This approach is supported by what we hear from our customers with an increasing interest to pay for the robots as a service or per use.

Robert Playter, Boston Dynamics: We’re offering a product for sale. We’re going to do the best we can to stop bad actors from using our technology for harm, but we don’t have the control to regulate every use. That said, we believe that our business will be best served if our technology is used for peaceful purposes—to work alongside people as trusted assistants and remove them from harm’s way. We do not want to see our technology used to cause harm or promote violence. Our restrictions are similar to those of other manufacturers or technology companies that take steps to reduce or eliminate the violent or unlawful use of their products.

Ryan Gariepy, Clearpath Robotics: Assuming the organization doing the restricting is a private organization and the robot and its software is sold vs. leased or “managed,” there aren't strong legal reasons to restrict use. That being said, the manufacturer likewise has no obligation to continue supporting that specific robot or customer going forward. However, given that we are only at the very edge of how robots will reshape a great deal of society, it is in the best interest for the manufacturer and user to be honest with each other about their respective goals. Right now, you're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.

“If a robot is being used in a way that is irresponsible due to safety: intervene! If it’s unethical: speak up!”
—Péter Fankhauser, ANYbotics

What can you realistically do to make sure that people who buy your robots use them in the ways that you intend?
Péter Fankhauser, ANYbotics: We maintain a close collaboration with our customers to ensure their success with our solution. So for us, we have refrained from technical solutions to block unintended use.

Robert Playter, Boston Dynamics: We vet our customers to make sure that their desired applications are things that Spot can support, and are in alignment with our Terms and Conditions of Sale. We’ve turned away customers whose applications aren’t a good match with our technology. If customers misuse our technology, we’re clear in our Terms of Sale that their violations may void our warranty and prevent their robots from being updated, serviced, repaired, or replaced. We may also repossess robots that are not purchased, but leased. Finally, we will refuse future sales to customers that violate our Terms of Sale.

Ryan Gariepy, Clearpath Robotics: We typically work with our clients ahead of the purchase to make sure their expectations match reality, in particular on aspects like safety, supervisory requirements, and usability. It's far worse to sell a robot that'll sit on a shelf or worse, cause harm, then to not sell a robot at all, so we prefer to reduce the risk of this situation in advance of receiving an order or shipping a robot.

How do you evaluate the merit of edge cases, for example if someone wants to use your robot in research or art that may push the boundaries of what you personally think is responsible or ethical?
Péter Fankhauser, ANYbotics: It’s about the dialog, understanding, and figuring out alternatives that work for all involved parties and the earlier you can have this dialog the better.

Robert Playter, Boston Dynamics: There’s a clear line between exploring robots in research and art, and using the robot for violent or illegal purposes.

Ryan Gariepy, Clearpath Robotics: We have sold thousands of robots to hundreds of clients, and I do not recall the last situation that was not covered by a combination of export control and a general evaluation of the client's goals and expectations. I'm sure this will change as robots continue to drop in price and increase in flexibility and usability.

“You're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.”
—Ryan Gariepy, Clearpath Robotics

What should roboticists do if we see a robot being used in a way that we feel is unethical or irresponsible?
Péter Fankhauser, ANYbotics: If it’s irresponsible due to safety: intervene! If it’s unethical: speak up!

Robert Playter, Boston Dynamics: We want robots to be beneficial for humanity, which includes the notion of not causing harm. As an industry, we think robots will achieve long-term commercial viability only if people see robots as helpful, beneficial tools without worrying if they’re going to cause harm.

Ryan Gariepy, Clearpath Robotics: On a one off basis, they should speak to a combination of the user, the supplier or suppliers, the media, and, if safety is an immediate concern, regulatory or government agencies. If the situation in question risks becoming commonplace and is not being taken seriously, they should speak up more generally in appropriate forums—conferences, industry groups, standards bodies, and the like.

As more and more robots representing different capabilities become commercially available, these issues are likely to come up more frequently. The three companies we talked to certainly don’t represent every viewpoint, and we did reach out to other companies who declined to comment. But I would think (I would hope?) that everyone in the robotics community can agree that robots should be used in a way that makes people’s lives better. What “better” means in the context of art and research and even robots in the military may not always be easy to define, and inevitably there’ll be disagreement as to what is ethical and responsible, and what isn’t.

We’ll keep on talking about it, though, and do our best to help the robotics community to continue growing and evolving in a positive way. Let us know what you think in the comments. Continue reading

Posted in Human Robots

#438553 New Drone Software Handles Motor ...

Good as some drones are becoming at obstacle avoidance, accidents do still happen. And as far as robots go, drones are very much on the fragile side of things. Any sort of significant contact between a drone and almost anything else usually results in a catastrophic, out-of-control spin followed by a death plunge to the ground. Bad times. Bad, expensive times.

A few years ago, we saw some interesting research into software that can keep the most common drone form factor, the quadrotor, aloft and controllable even after the failure of one motor. The big caveat to that software was that it relied on GPS for state estimation, meaning that without a GPS signal, the drone is unable to get the information it needs to keep itself under control. In a paper recently accepted to RA-L, researchers at the University of Zurich report that they have developed a vision-based system that brings state estimation completely on-board. The upshot: potentially any drone with some software and a camera can keep itself safe even under the most challenging conditions.

A few years ago, we wrote about first author Sihao Sun’s work on high speed controlled flight of a quadrotor with a non-functional motor. But that innovation relied on an external motion capture system. Since then, Sun has moved from Tu Delft to Davide Scaramuzza’s lab at UZH, and it looks like he’s been able to combine his work on controlled spinning flight with the Robotics and Perception Group’s expertise in vision. Now, a downward-facing camera is all it takes for a spinning drone to remain stable and controllable:

Remember, this software isn’t just about guarding against motor failure. Drone motors themselves don’t just up and fail all that often, either with respect to their software or hardware. But they do represent the most likely point of failure for any drone, usually because when you run into something, what ultimately causes your drone to crash is damage to a motor or a propeller that causes loss of control.

The reason that earlier solutions relied on GPS was because the spinning drone needs a method of state estimation—that is, in order to be closed-loop controllable, the drone needs to have a reasonable understanding of what its position is and how that position is changing over time. GPS is an easy way to take care of this, but GPS is also an external system that doesn’t work everywhere. Having a state estimation system that’s completely internal to the drone itself is much more fail safe, and Sun got his onboard system to work through visual feature tracking with a downward-facing camera, even as the drone is spinning at over 20 rad/s.

While the system works well enough with a regular downward-facing camera—something that many consumer drones are equipped with for stabilization purposes—replacing it with an event camera (you remember event cameras, right?) makes the performance even better, especially in low light.

For more details on this, including what you’re supposed to do with a rapidly spinning partially disabled quadrotor (as well as what it’ll take to make this a standard feature on consumer hardware), we spoke with Sihao Sun via email.

IEEE Spectrum: what usually happens when a drone spinning this fast lands? Is there any way to do it safely?

Sihao Sun: Our experience shows that we can safely land the drone while it is spinning. When the range sensor measurements are lower than a threshold (around 10 cm, indicating that the drone is close to the ground), we switch off the rotors. During the landing procedure, despite the fast spinning motion, the thrust direction oscillates around the gravity vector, thus the drone touches the ground with its legs without damaging other components.

Can your system handle more than one motor failure?

Yes, the system can also handle the failure of two opposing rotors. However, if two adjacent rotors or more than two rotors fail, our method cannot save the quadrotor. Some research has shown that it is possible to control a quadrotor with only one remaining rotor. But the drone requires a very special inertial property, which is hard to satisfy in real applications.

How different is your system's performance from a similar system that relies on GPS, in a favorable environment?

In a favorable environment, our system outperforms those relying on GPS signals because it obtains better position estimates. Since a damaged quadrotor spins fast, the accelerometer readings are largely affected by centrifugal forces. When the GPS signal is lost or degraded, a drone relying on GPS needs to integrate these biased accelerometer measurements for position estimation, leading to large position estimation errors. Feeding these erroneous estimates to the flight controller can easily crash the drone.

When you say that your solution requires “only onboard sensors and computation,” are those requirements specialized, or would they be generally compatible with the current generation of recreational and commercial quadrotors?

We use an NVIDIA Jetson TX2 to run our solution, which includes two parts: the control algorithm and the vision-based state estimation algorithm. The control algorithm is lightweight; thus, we believe that it is compatible with the current generation of quadrotors. On the other hand, the vision-based state estimation requires relatively more computational resources, which may not be affordable for cheap recreational platforms. But this is not an issue for commercial quadrotors because many of them have more powerful processors than a TX2.

What else can event cameras be used for, in recreational or commercial applications?

Many drone applications can benefit from event cameras, especially those in high-speed or low-light conditions, such as autonomous drone racing, cave exploration, drone delivery during night time, etc. Event cameras also consume very little power, which is a significant advantage for energy-critical missions, such as planetary aerial vehicles for Mars explorations. Regarding space applications, we are currently collaborating with JPL to explore the use of event cameras to address the key limitations of standard cameras for the next Mars helicopter.

[ UZH RPG ] Continue reading

Posted in Human Robots

#438506 How humans can build better teamwork ...

As human interaction with robots and artificial intelligence increases exponentially in areas like healthcare, manufacturing, transportation, space exploration, defense technologies, information about how humans and autonomous systems work within teams remains scarce. Continue reading

Posted in Human Robots