Tag Archives: be

#439431 What Will Education be Like in the ...

Image by Mediamodifier from Pixabay The field of education is changing under the influence of technology and artificial intelligence. Old educational methods are already being transformed today and may lose their relevance in the future. In a few years, your teacher may be a computer program. And in the distant future, education will be like …

The post What Will Education be Like in the Future? appeared first on TFOT. Continue reading

Posted in Human Robots

#439374 A model to predict how much humans and ...

Researchers at University of Michigan have recently developed a bi-directional model that can predict how much both humans and robotic agents can be trusted in situations that involve human-robot collaboration. This model, presented in a paper published in IEEE Robotics and Automation Letters, could help to allocate tasks to different agents more reliably and efficiently. Continue reading

Posted in Human Robots

#439366 Why Robots Can’t Be Counted On to Find ...

On Thursday, a portion of the 12-story Champlain Towers South condominium building in Surfside, Florida (just outside of Miami) suffered a catastrophic partial collapse. As of Saturday morning, according to the Miami Herald, 159 people are still missing, and rescuers are removing debris with careful urgency while using dogs and microphones to search for survivors still trapped within a massive pile of tangled rubble.

It seems like robots should be ready to help with something like this. But they aren’t.

JOE RAEDLE/GETTY IMAGES

A Miami-Dade Fire Rescue official and a K-9 continue the search and rescue operations in the partially collapsed 12-story Champlain Towers South condo building on June 24, 2021 in Surfside, Florida.

The picture above shows what the site of the collapse in Florida looks like. It’s highly unstructured, and would pose a challenge for most legged robots to traverse, although you could see a tracked robot being able to manage it. But there are already humans and dogs working there, and as long as the environment is safe to move over, it’s not necessary or practical to duplicate that functionality with a robot, especially when time is critical.

What is desperately needed right now is a way of not just locating people underneath all of that rubble, but also getting an understanding of the structure of the rubble around a person, and what exactly is between that person and the surface. For that, we don’t need robots that can get over rubble: we need robots that can get into rubble. And we don’t have them.

To understand why, we talked with Robin Murphy at Texas A&M, who directs the Humanitarian Robotics and AI Laboratory, formerly the Center for Robot-Assisted Search and Rescue (CRASAR), which is now a non-profit. Murphy has been involved in applying robotic technology to disasters worldwide, including 9/11, Fukushima, and Hurricane Harvey. The work she’s doing isn’t abstract research—CRASAR deploys teams of trained professionals with proven robotic technology to assist (when asked) with disasters around the world, and then uses those experiences as the foundation of a data-driven approach to improve disaster robotics technology and training.

According to Murphy, using robots to explore rubble of collapsed buildings is, for the moment, not possible in any kind of way that could be realistically used on a disaster site. Rubble, generally, is a wildly unstructured and unpredictable environment. Most robots are simply too big to fit through rubble, and the environment isn’t friendly to very small robots either, since there’s frequently water from ruptured plumbing making everything muddy and slippery, among many other physical hazards. Wireless communication or localization is often impossible, so tethers are required, which solves the comms and power problems but can easily get caught or tangled on obstacles.

Even if you can build a robot small enough and durable enough to be able to physically fit through the kinds of voids that you’d find in the rubble of a collapsed building (like these snake robots were able to do in Mexico in 2017), useful mobility is about more than just following existing passages. Many disaster scenarios in robotics research assume that objectives are accessible if you just follow the right path, but real disasters aren’t like that, and large voids may require some amount of forced entry, if entry is even possible at all. An ability to forcefully burrow, which doesn’t really exist yet in this context but is an active topic of research, is critical for a robot to be able to move around in rubble where there may not be any tunnels or voids leading it where it wants to go.

And even if you can build a robot that can successfully burrow its way through rubble, there’s the question of what value it’s able to provide once it gets where it needs to be. Robotic sensing systems are in general not designed for extreme close quarters, and visual sensors like cameras can rapidly get damaged or get so much dirt on them that they become useless. Murphy explains that ideally, a rubble-exploring robot would be able to do more than just locate victims, but would also be able to use its sensors to assist in their rescue. “Trained rescuers need to see the internal structure of the rubble, not just the state of the victim. Imagine a surgeon who needs to find a bullet in a shooting victim, but does not have any idea of the layout of the victims organs; if the surgeon just cuts straight down, they may make matters worse. Same thing with collapses, it’s like the game of pick-up sticks. But if a structural specialist can see inside the pile of pick-up sticks, they can extract the victim faster and safer with less risk of a secondary collapse.”

Besides these technical challenges, the other huge part to all of this is that any system that you’d hope to use in the context of rescuing people must be fully mature. It’s obviously unethical to take a research-grade robot into a situation like the Florida building collapse and spend time and resources trying to prove that it works. “Robots that get used for disasters are typically used every day for similar tasks,” explains Murphy. For example, it wouldn’t be surprising to see drones being used to survey the parts of the building in Florida that are still standing to make sure that it’s safe for people to work nearby, because drones are a mature and widely adopted technology that has already proven itself. Until a disaster robot has achieved a similar level of maturity, we’re not likely to see it take place in an active rescue.

Keeping in mind that there are no existing robots that fulfill all of the above criteria for actual use, we asked Murphy to describe her ideal disaster robot for us. “It would look like a very long, miniature ferret,” she says. “A long, flexible, snake-like body, with small legs and paws that can grab and push and shove.” The robo-ferret would be able to burrow, to wiggle and squish and squeeze its way through tight twists and turns, and would be equipped with functional eyelids to protect and clean its sensors. But since there are no robo-ferrets, what existing robot would Murphy like to see in Florida right now? “I’m not there in Miami,” Murphy tells us, “but my first thought when I saw this was I really hope that one day we’re able to commercialize Japan’s Active Scope Camera.”

The Active Scope Camera was developed at Tohoku University by Satoshi Tadokoro about 15 years ago. It operates kind of like a long, skinny, radially symmetrical bristlebot with the ability to push itself forward:

The hose is covered by inclined cilia. Motors with eccentric mass are installed in the cable and excite vibration and cause an up-and-down motion of the cable. The tips of the cilia stick on the floor when the cable moves down and propel the body. Meanwhile, the tips slip against the floor, and the body does not move back when it moves up. A repetition of this process showed that the cable can slowly move in a narrow space of rubble piles.

“It's quirky, but the idea of being able to get into those small spaces and go about 30 feet in and look around is a big deal,” Murphy says. But the last publication we can find about this system is nearly a decade old—if it works so well, we asked Murphy, why isn’t it more widely available to be used after a building collapses? “When a disaster happens, there’s a little bit of interest, and some funding. But then that funding goes away until the next disaster. And after a certain point, there’s just no financial incentive to create an actual product that’s reliable in hardware and software and sensors, because fortunately events like this building collapse are rare.”

Photo: Center for Robot-Assisted Search and Rescue

Dr. Satoshi Tadokoro inserting the Active Scope Camera robot at the 2007 Berkman Plaza II (Jacksonville, FL) parking garage collapse.

The fortunate rarity of disasters like these complicates the development cycle of disaster robots as well, says Murphy. That’s part of the reason why CRASAR exists in the first place—it’s a way for robotics researchers to understand what first responders need from robots, and to test those robots in realistic disaster scenarios to determine best practices. “I think this is a case where policy and government can actually help,” Murphy tells us. “They can help by saying, we do actually need this, and we’re going to support the development of useful disaster robots.”

Robots should be able to help out in the situation happening right now in Florida, and we should be spending more time and effort on research in that direction that could potentially be saving lives. We’re close, but as with so many aspects of practical robotics, it feels like we’ve been close for years. There are systems out there with a lot of potential, they just need all help necessary to cross the gap from research project to a practical, useful system that can be deployed when needed. Continue reading

Posted in Human Robots

#439342 Why Flying Cars Could Be Here Within the ...

Flying cars are almost a byword for the misplaced optimism of technologists, but recent news suggests their future may be on slightly firmer footing. The industry has seen a major influx of capital and big automakers seem to be piling in.

What actually constitutes a flying car has changed many times over the decades since the cartoon, The Jetsons, introduced the idea to the popular imagination. Today’s incarnation is known more formally as an electric vertical takeoff and landing (eVTOL) aircraft.

As the name suggests, the vehicles run on battery power rather than aviation fuel, and they’re able to take off and land like a helicopter. Designs vary from what are essentially gigantic multi-rotor drones to small fixed-wing aircraft with rotors that can tilt up or down, allowing them to hover or fly horizontally (like an airplane).

Aerospace companies and startups have been working on the idea for a number of years, but recent news suggests it might be coming closer to fruition. Last Monday, major automakers Hyundai and GM said they are developing vehicles of their own and are bullish about the prospects of this new mode of transport.

And the week prior, British flying car maker Vertical Aerospace announced plans to go public in a deal that values the company at $2.2 billion. Vertical Aerospace also said it had received $4 billion worth of preorders, including from American Airlines and Virgin Atlantic.

The deal was the latest installment in a flood of capital into the sector, with competitors Joby Aviation, Archer Aviation, and Lilium all recently announcing deals to go public too. Also joining them is Blade Urban Mobility, which currently operates heliports but plans to accommodate flying cars when they become available.

When exactly that will be is still uncertain, but there seems to be growing consensus that the second half of this decade might be a realistic prospect. Vertical is aiming to start deliveries by 2024. And the other startups, who already have impressive prototypes, are on a similar timeline.

Hyundai’s global chief operating officer, José Muñoz, told attendees at Reuters’ Car of the Future conference that the company is targeting a 2025 rollout of an air taxi service, while GM’s vice president of global innovation, Pamela Fletcher, went with a more cautious 2030 target. They’re not the only automakers getting in on the act, with Toyota, Daimler, and China’s Geely all developing vehicles alone or in partnership with startups.

Regulators also seem to be increasingly open to the idea.

In January, the Federal Aviation Administration (FAA) announced it expects to certify the first eVTOLs later this year and have regulations around their operation in place by 2023. And last month the European Union Aviation Safety Agency said it expected air taxi services to be running by 2024 or 2025.

While it seems fairly settled that the earliest flying cars will be taxis rather than private vehicles, a major outstanding question is the extent to which they will be automated.

The majority of prototypes currently rely on a human to pilot them. But earlier this month Larry Page’s air taxi startup Kitty Hawk announced it would buy drone maker 3D Robotics as it seeks to shift to a fully autonomous setup. The FAA recently created a new committee to draft a regulatory path for beyond-visual-line-of-sight (BVLOS) autonomous drone flights. This would likely be a first step along the path to allowing unmanned passenger aircraft.

What seems more certain is that there will be winners and losers in the recent rush to corner the air mobility market. As Chris Bryant points out in Bloomberg, these companies still face a host of technological, regulatory, and social hurdles, and the huge amounts of money flooding into the sector may be hard to justify.

Regardless of which companies make it out the other side, it’s looking increasingly likely that air taxis will be a significant new player in urban transport by the end of the decade.

Image Credit: Joby Aviation Continue reading

Posted in Human Robots

#439320 Lethal Autonomous Weapons Exist; They ...

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

A chilling future that some had said might not arrive for many years to come is, in fact, already here. According to a recent UN report, a drone airstrike in Libya from the spring of 2020—made against Libyan National Army forces by Turkish-made STM Kargu-2 drones on behalf of Libya’s Government of National Accord—was conducted by weapons systems with no known humans “in the loop.”

In so many words, the red line of autonomous targeting of humans has now been crossed.

To the best of our knowledge, this official United Nations reporting marks the first documented use case of a lethal autonomous weapon system akin to what has elsewhere been called a “Slaughterbot.” We believe this is a landmark moment. Civil society organizations, such as ours, have previously advocated for a preemptive treaty prohibiting the development and use of lethal autonomous weapons, much as blinding weapons were preemptively banned in 1998. The window for preemption has now passed, but the need for a treaty is more urgent than ever.

The STM Kargu-2 is a flying quadcopter that weighs a mere 7 kg, is being mass-produced, is capable of fully autonomous targeting, can form swarms, remains fully operational when GPS and radio links are jammed, and is equipped with facial recognition software to target humans. In other words, it’s a Slaughterbot.

The UN report notes: “Logistics convoys and retreating [Haftar Affiliated Forces] were subsequently hunted down and remotely engaged by the unmanned combat aerial vehicles or the lethal autonomous weapons systems such as the STM Kargu-2 (see Annex 30) and other loitering munitions. The lethal autonomous weapons systems were programmed to attack targets without requiring data connectivity between the operator and the munition.” Annex 30 of the report depicts photographic evidence of the downed STM Kargu-2 system.

UNITED NATIONS

In a previous effort to identify consensus areas for prohibition, we brought together experts with a range of views on lethal autonomous weapons to brainstorm a way forward. We published the agreed findings in “A Path Towards Reasonable Autonomous Weapons Regulation,” which suggested a “time-limited moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems” as a first, and absolute minimum, step for regulation.

A recent position statement from the International Committee of the Red Cross on autonomous weapons systems concurs. It states that “use of autonomous weapon systems to target human beings should be ruled out. This would best be achieved through a prohibition on autonomous weapon systems that are designed or used to apply force against persons.” This sentiment is shared by many civil society organizations, such as the UK-based advocacy organization Article 36, which recommends that “An effective structure for international legal regulation would prohibit certain configurations—such as systems that target people.”

The “Slaughterbots” Question

In 2017, the Future of Life Institute, which we represent, released a nearly eight-minute-long video titled “Slaughterbots”—which was viewed by an estimated 75 million people online—dramatizing the dangers of lethal autonomous weapons. At the time of release, the video received both praise and criticism. Paul Scharre’s Dec. 2017 IEEE Spectrum article “Why You Shouldn’t Fear Slaughterbots” argued that “Slaughterbots” was “very much science fiction” and a “piece of propaganda.” At a Nov. 2017 meeting about lethal autonomous weapons in Geneva, Switzerland, the Russian ambassador to the UN also reportedly dismissed it, saying that such concerns were 25 or 30 years in the future. We addressed these critiques in our piece—also for Spectrum— titled “Why You Should Fear Slaughterbots–A Response.” Now, less than four years later, reality has made the case for us: The age of Slaughterbots appears to have begun.

The first step must be an immediate moratorium on the development, deployment, and use of lethal autonomous weapons that target persons, combined with a commitment to negotiate a permanent treaty.

We produced “Slaughterbots” to educate the public and policymakers alike about the potential imminent dangers of small, cheap, and ubiquitous lethal autonomous weapons systems. Beyond the moral issue of handing over decisions over life and death to algorithms, the video pointed out that autonomous weapons will, inevitably, turn into weapons of mass destruction, precisely because they require no human supervision and can therefore be deployed in vast numbers. (A related point, concerning the tactical agility of such weapons platforms, was made in Spectrum last month in an article by Natasha Bajema.) Furthermore, like small arms, autonomous weaponized drones will proliferate easily on the international arms market. As the “Slaughterbots” video’s epilogue explained, all the component technologies were already available, and we expected militaries to start deploying such weapons very soon. That prediction was essentially correct.

The past few years have seen a series of media reports about military testing of ever-larger drone swarms and battlefield use of weapons with increasingly autonomous functions. In 2019, then-Secretary of Defense Mark Esper, at a meeting of the National Security Commission on Artificial Intelligence, remarked, “As we speak, the Chinese government is already exporting some of its most advanced military aerial drones to the Middle East.

“In addition,” Esper added, “Chinese weapons manufacturers are selling drones advertised as capable of full autonomy, including the ability to conduct lethal targeted strikes.”

While China has entered the autonomous drone export business, other producers and exporters of highly autonomous weapons systems include Turkey and Israel. Small drone systems have progressed from being limited to semi-autonomous and anti-materiel targeting, to possessing fully autonomous operational modes equipped with sensors that can identify, track, and target humans.

Azerbaijan’s decisive advantage over Armenian forces in the 2020 Nagorno-Karabakh conflict has been attributed to their arsenal of cheap, kamikaze “suicide drones.” During the conflict, there was reported use of the Israeli Orbiter 1K and Harop, which are both loitering munitions that self-destruct on impact. These weapons are deployed by a human in a specific geographic region, but they ultimately select their own targets without human intervention. Azerbaijan’s success with these weapons has provided a compelling precedent for how inexpensive, highly autonomous systems can enable militaries without an advanced air force to compete on the battlefield. The result has been a worldwide surge in demand for these systems, as the price of air superiority has gone down dramatically. While the systems used in Azerbaijan are arguably a software update away from autonomous targeting of humans, their described intended use was primarily materiel targets such as radar systems and vehicles.

If, as it seems, the age of Slaughterbots is here, what can the world do about it? The first step must be an immediate moratorium on the development, deployment, and use of lethal autonomous weapons that target persons, combined with a commitment to negotiate a permanent treaty. We also need agreements that facilitate verification and enforcement, including design constraints on remotely piloted weapons that prevent software conversion to autonomous operation as well as industry rules to prevent large-scale, illicit weaponization of civilian drones.

We want nothing more than for our “Slaughterbots” video to become merely a historical reminder of a horrendous path not taken—a mistake the human race could have made, but didn’t.

Stuart Russell is a professor of computer science at the University of California, Berkeley, and coauthor of the standard textbook “Artificial Intelligence: A Modern Approach.”

Anthony Aguirre is a professor of physics at the University of California, Santa Cruz, and cofounder of the Future of Life Institute.

Emilia Javorsky is a physician-scientist who leads advocacy on autonomous weapons for the Future of Life Institute.

Max Tegmark is a professor of physics at MIT, cofounder of the Future of Life Institute, and author of “Life 3.0: Being Human in the Age of Artificial Intelligence.” Continue reading

Posted in Human Robots